Skip to content
Snippets Groups Projects
cylsamp.cc 5.60 KiB
/*  cylsamp.cc

    Mark Jenkinson, FMRIB Image Analysis Group

    Copyright (C) 2004 University of Oxford  */

/*  CCOPYRIGHT  */

// Performs cylindrical sampling over a surface.  That is, averaging
//  all values within a cylindrical region centred at each surface
//  point on a mask.


#define _GNU_SOURCE 1
#define POSIX_SOURCE 1

#include "newimage/newimageall.h"
#include "miscmaths/miscmaths.h"
#include "utils/options.h"

using namespace MISCMATHS;
using namespace NEWIMAGE;
using namespace Utilities;

// The two strings below specify the title and example usage that is
//  printed out as the help or usage message

string title="cylsamp (Version 1.0)\nCopyright(c) 2004, University of Oxford (Mark Jenkinson)";
string examples="cylsamp [options] -i <input mask image> -s <smoothing in mm> -o <output surface normal image>";

// Each (global) object below specificies as option and can be accessed
//  anywhere in this file (since they are global).  The order of the
//  arguments needed is: name(s) of option, default value, help message,
//       whether it is compulsory, whether it requires arguments
// Note that they must also be included in the main() function or they
//  will not be active.

Option<bool> verbose(string("-v,--verbose"), false, 
		     string("switch on diagnostic messages"), 
		     false, no_argument);
Option<bool> help(string("-h,--help"), false,
		  string("display this message"),
		  false, no_argument);
Option<float>  radius(string("-r"),5.0,
		      string("radius of cylinder in mm (default is 5.0)"),
		      false, requires_argument);
Option<float>  height(string("-h"),10.0,
		      string("height of cylinder in mm (default is 10.0)"),
		      false, requires_argument);
Option<string> maskname(string("-m"), string(""),
		      string("input mask image filename"),
		      true, requires_argument);
Option<string> normname(string("-n"), string(""),
		      string("input surface normal image filename"),
		      true, requires_argument);
Option<string> edgemaskname(string("-e"), string(""),
		      string("input edge mask image filename"),
		      true, requires_argument);
Option<string> flowname(string("-f"), string(""),
		      string("input flow image filename"),
		      true, requires_argument);
Option<string> outname(string("-o"), string(""),
		       string("output surface normal filename"),
		       true, requires_argument);
int nonoptarg;

////////////////////////////////////////////////////////////////////////////

// Local functions
int do_work(int argc, char* argv[]) 
{
  volume<float> vflow, vmask, vedgemask, vsamp;
  volume4D<float> snorm;
  read_volume(vflow,flowname.value());
  read_volume(vmask,maskname.value());
  read_volume(vedgemask,edgemaskname.value());
  read_volume4D(snorm,normname.value());

  // force input to be a binary mask
  if (verbose.value()) print_info(vmask,"vmask");
  vsamp = vmask;

  float r=radius.value();
  float r2 = r*r;
  float h=height.value();
  int len=(int) (sqrt(r*r + h*h)) + 1;

  bool atedge;
  if (verbose.value()) { cerr << "Performing Cylindrical Sampling" << endl; }
  for (int z=vmask.minz(); z<=vmask.maxz(); z++) {
    for (int y=vmask.miny(); y<=vmask.maxy(); y++) {
      for (int x=vmask.minx(); x<=vmask.maxx(); x++) {
	atedge = false;
	// check to see if it is an edge point
	if ( (vmask(x,y,z)>0.5) ) {
	  if (vmask(x,y,z-1)<0.5) atedge=true;
	  else { 
	    if (vmask(x,y-1,z)<0.5) atedge=true;
	    else { 
	      if (vmask(x-1,y,z)<0.5) atedge=true;
	      else {
		if (vmask(x+1,y,z)<0.5) atedge=true;
		else {
		  if (vmask(x,y+1,z)<0.5) atedge=true;
		  else {
		    if (vmask(x,y,z+1)<0.5) atedge=true;
		  }
		}
	      }
	    }
	  }
	}
	if (atedge) {
	  // OK, now do the cylindrical sampling
	  float tot=0.0;
	  int num=0;
	  for (int z1=Max(z-len,vmask.minz()); z1<=Min(z+len,vmask.maxz()); z1++) {
	    for (int y1=Max(y-len,vmask.miny()); y1<=Min(y+len,vmask.maxy()); y1++) {
	      for (int x1=Max(x-len,vmask.minx()); x1<=Min(x+len,vmask.maxx()); x1++) {
		if (vedgemask(x1,y1,z1)>0.5) {
		  float yy = snorm(x1,y1,z1,0) * (x1 - x) 
		    + snorm(x1,y1,z1,1) * (y1 - y)  
		    + snorm(x1,y1,z1,2) * (z1 - z);
		  if (fabs(yy)<=h) {
		    float xx2 = ( Sqr(x1-x) + Sqr(y1-y) + Sqr(z1-z) ) - Sqr(yy);
		    if (xx2 <= r2) {
		      // inside cylinder
		      num++;
		      tot += vflow(x1,y1,z1);
		    }
		  }
		}
	      }
	    }
	  }
	  vsamp(x,y,z) = tot / Max(num,1);  // prevent divide by zero
	} else {
	  vsamp(x,y,z) = 0.0;
	}
      }
    }
    if (verbose.value()) { cerr << "."; }
  }
  if (verbose.value()) { cerr << endl; }

  // save the results
  save_volume(vsamp,outname.value());

  return 0;
}

////////////////////////////////////////////////////////////////////////////

int main(int argc,char *argv[])
{

  Tracer tr("main");
  OptionParser options(title, examples);

  try {
    // must include all wanted options here (the order determines how
    //  the help message is printed)
    options.add(flowname);
    options.add(edgemaskname);
    options.add(maskname);
    options.add(normname);
    options.add(outname);
    options.add(radius);
    options.add(height);
    options.add(verbose);
    options.add(help);
    
    nonoptarg = options.parse_command_line(argc, argv);

    // line below stops the program if the help was requested or 
    //  a compulsory option was not set
    if ( (help.value()) || (!options.check_compulsory_arguments(true)) )
      {
	options.usage();
	exit(EXIT_FAILURE);
      }
    
  }  catch(X_OptionError& e) {
    options.usage();
    cerr << endl << e.what() << endl;
    exit(EXIT_FAILURE);
  } catch(std::exception &e) {
    cerr << e.what() << endl;
  } 

  // Call the local functions

  return do_work(argc,argv);
}