Newer
Older
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In contrast to the simple indexing we have already seen, boolean indexing will\n",
"return a _copy_ of the indexed data, __not__ a view. For example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
"b = a[a > 5]\n",
"print('a: ', a)\n",
"print('b: ', b)\n",
"print('Setting b[0] to 999')\n",
"b[0] = 999\n",
"print('a: ', a)\n",
"print('b: ', b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> In general, any 'simple' indexing operation on a Numpy array, where the\n",
"> indexing object comprises integers, slices (using the standard Python\n",
"> `start:stop:step` notation), colons (`:`) and/or ellipses (`...`), will\n",
"> result in a __view__ into the indexed array. Any 'advanced' indexing\n",
"> operation, where the indexing object contains anything else (e.g. boolean or\n",
"> integer arrays, or even python lists), will result in a __copy__ of the\n",
"> data.\n",
"\n",
"\n",
"Logical operators `~` (not), `&` (and) and `|` (or) can be used to manipulate\n",
"and combine boolean Numpy arrays:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gt5 = a > 5\n",
"even = a % 2 == 0\n",
"\n",
"print('a: ', a)\n",
"print('elements in a which are > 5: ', a[ gt5])\n",
"print('elements in a which are <= 5: ', a[~gt5])\n",
"print('elements in a which are even: ', a[ even])\n",
"print('elements in a which are odd: ', a[~even])\n",
"print('elements in a which are > 5 and even: ', a[gt5 & even])\n",
"print('elements in a which are > 5 or odd: ', a[gt5 | ~even])"
]
},
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Numpy also has two handy functions, `all` and `any`, which respectively allow\n",
"you to perform boolean `and` and `or` operations along the axes of an array:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.arange(9).reshape((3, 3))\n",
"\n",
"print('a:')\n",
"print(a)\n",
"print('rows with any element divisible by 3: ', np.any(a % 3 == 0, axis=1))\n",
"print('cols with any element divisible by 3: ', np.any(a % 3 == 0, axis=0))\n",
"print('rows with all elements divisible by 3:', np.all(a % 3 == 0, axis=1))\n",
"print('cols with all elements divisible by 3:', np.all(a % 3 == 0, axis=0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"coordinate-array-indexing\"></a>\n",
"### Coordinate array indexing\n",
"\n",
"\n",
"You can index a numpy array using another array containing coordinates into\n",
"the first array. As with boolean indexing, this will result in a copy of the\n",
"data. Generally, you will need to have a separate array, or list, of\n",
"coordinates for each axis of the array you wish to index:"
"cell_type": "code",
"execution_count": null,
"a = np.arange(16).reshape((4, 4))\n",
"print('a:')\n",
"rows = [0, 2, 3]\n",
"cols = [1, 0, 2]\n",
"indexed = a[rows, cols]\n",
"for r, c, v in zip(rows, cols, indexed):\n",
" print('a[{}, {}] = {}'.format(r, c, v))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
"The `numpy.where` function can be combined with boolean arrays to easily\n",
"generate of coordinate arrays for values which meet some condition:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.arange(16).reshape((4, 4))\n",
"print('a:')\n",
"print(a)\n",
"\n",
"evenrows, evencols = np.where(a % 2 == 0)\n",
"\n",
"print('even row coordinates:', evenx)\n",
"print('even col coordinates:', eveny)\n",
"\n",
"print(a[evenrows, evencols])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"exercises\"></a>\n",
"## Exercises\n",
"\n",
"\n",
"The challenge for each of these exercises is to complete them in as few lines\n",
"of code as possible!\n",
"\n",
"\n",
"> You can find example answers to the exercises in `04_numpy/.solutions`.\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"load-an-array-from-a-file-and-do-stuff-with-it\"></a>\n",
"### Load an array from a file and do stuff with it\n",
"\n",
"\n",
"Load the file `04_numpy/2d_array.txt`, and calculate and print the mean for\n",
"each column. If your code doesn't work, you might want to __LOOK AT YOUR\n",
"DATA__, as you will have learnt if you have ever attended the FSL course.\n",
"\n",
"\n",
"> Bonus: Find the hidden message (hint:\n",
"> [chr](https://docs.python.org/3/library/functions.html#chr))\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"concatenate-affine-transforms\"></a>\n",
"### Concatenate affine transforms\n",
"\n",
"\n",
"Given all of the files in `04_numpy/xfms/`, create a transformation matrix\n",
"which can transform coordinates from subject 1 functional space to subject 2\n",
"functional space<sup>4</sup>.\n",
"\n",
"Write some code to transform the following coordinates from subject 1\n",
"functional space to subject 2 functional space, to test that your matrix is\n",
"correct:\n",
"\n",
"\n",
"| __Subject 1 coordinates__ | __Subject 2 coordinates__ |\n",
"|:-------------------------:|:-------------------------:|\n",
"| `[ 0.0, 0.0, 0.0]` | `[ 3.21, 4.15, -9.89]` |\n",
"| `[-5.0, -20.0, 10.0]` | `[-0.87, -14.36, -1.13]` |\n",
"| `[20.0, 25.0, 60.0]` | `[29.58, 27.61, 53.37]` |\n",
"\n",
"\n",
"> <sup>4</sup> Even though these are FLIRT transforms, this is just a toy\n",
"> example. Look\n",
"> [here](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/FAQ#What_is_the_format_of_the_matrix_used_by_FLIRT.2C_and_how_does_it_relate_to_the_transformation_parameters.3F)\n",
"> and\n",
"> [here](https://git.fmrib.ox.ac.uk/fsl/fslpy/blob/1.6.2/fsl/utils/transform.py#L537)\n",
"> if you actually need to work with FLIRT transforms.\n",
"\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"appendix-generating-random-numbers\"></a>\n",
"## Appendix A: Generating random numbers\n",
"\n",
"\n",
"Numpy's\n",
"[`numpy.random`](https://docs.scipy.org/doc/numpy/reference/routines.random.html)\n",
"module is where you should go if you want to introduce a little randomness\n",
"into your code. You have already seen a couple of functions for generating\n",
"uniformly distributed real or integer data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy.random as npr\n",
"\n",
"print('Random floats between 0.0 (inclusive) and 1.0 (exclusive):')\n",
"print(npr.random((3, 3)))\n",
"\n",
"print('Random integers in a specified range:')\n",
"print(npr.randint(1, 100, (3, 3)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also draw random data from other distributions - here are just a few\n",
"examples:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Gaussian (mean: 0, stddev: 1):')\n",
"print(npr.normal(0, 1, (3, 3)))\n",
"print('Gamma (shape: 1, scale: 1):')\n",
"print(npr.normal(1, 1, (3, 3)))\n",
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
"print('Chi-square (dof: 10):')\n",
"print(npr.chisquare(10, (3, 3)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `numpy.random` module also has a couple of other handy functions for\n",
"random sampling of existing data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = np.arange(5)\n",
"\n",
"print('data: ', data)\n",
"print('two random values: ', npr.choice(data, 2))\n",
"print('random permutation: ', npr.permutation(data))\n",
"\n",
"# The numpy.random.shuffle function\n",
"# will shuffle an array *in-place*.\n",
"npr.shuffle(data)\n",
"print('randomly shuffled: ', data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"appendix-importing-numpy\"></a>\n",
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
"\n",
"\n",
"For interactive exploration/experimentation, you might want to import\n",
"Numpy like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from numpy import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This makes your Python session very similar to Matlab - you can call all\n",
"of the Numpy functions directly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"e = array([1, 2, 3, 4, 5])\n",
"z = zeros((100, 100))\n",
"d = diag([2, 3, 4, 5])\n",
"\n",
"print(e)\n",
"print(z)\n",
"print(d)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But if you are writing a script or application using Numpy, I implore you to\n",
"Numpy (and its commonly used sub-modules) like this instead:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import numpy.random as npr\n",
"import numpy.linalg as npla"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The downside to this is that you will have to prefix all Numpy functions with\n",
"`np.`, like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"e = np.array([1, 2, 3, 4, 5])\n",
"z = np.zeros((100, 100))\n",
"d = np.diag([2, 3, 4, 5])\n",
"\n",
"print(e)\n",
"print(z)\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is a big upside, however, in that other people who have to read/use your\n",
"code will like you a lot more. This is because it will be easier for them to\n",
"figure out what the hell your code is doing. Namespaces are your friend - use\n",
"them!\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"appendix-vectors-in-numpy\"></a>\n",
"One aspect of Numpy which might trip you up, and which can be quite\n",
"frustrating at times, is that Numpy has no understanding of row or column\n",
"vectors. __An array with only one dimension is neither a row, nor a column\n",
"vector - it is just a 1D array__. If you have a 1D array, and you want to use\n",
"it as a row vector, you need to reshape it to a shape of `(1, N)`. Similarly,\n",
"to use a 1D array as a column vector, you must reshape it to have shape\n",
"`(N, 1)`.\n",
"\n",
"\n",
"In general, when you are mixing 1D arrays with 2- or N-dimensional arrays, you\n",
"need to make sure that your arrays have the correct shape. For example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"r = np.random.randint(1, 10, 3)\n",
"\n",
"print('r is a row: ', r)\n",
"print('r.T should be a column: ', r.T, ' ... huh?')\n",
"print('Ok, make n a 2D array with one row: ', r.reshape(1, -1))\n",
"print('We could also use the np.atleast_2d function:', np.atleast_2d(r))\n",
"print('Now we can transpose r to get a column:')\n",
"print(np.atleast_2d(r).T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"useful-references\"></a>\n",
"## Useful references\n",
"\n",
"\n",
"* [The Numpy manual](https://docs.scipy.org/doc/numpy/)\n",
"* [Linear algebra in `numpy.linalg`](https://docs.scipy.org/doc/numpy/reference/routines.linalg.html)\n",
"* [Broadcasting in Numpy](https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)\n",
"* [Indexing in Numpy](https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html)\n",
"* [Random sampling in `numpy.random`](https://docs.scipy.org/doc/numpy/reference/routines.random.html)\n",
"* [Python slicing](https://www.pythoncentral.io/how-to-slice-listsarrays-and-tuples-in-python/)"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}