Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"\n",
"# Calling C++ code from Python\n",
"\n",
"## Problem\n",
"\n",
" - We have some existing C++ code which operates on array/image data\n",
" - We want to call it from Python\n",
" - We want to use Numpy arrays to pass input and receive output\n",
" - **Ideally, want to avoid too much copying of large data**\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution I will present\n",
"\n",
" - Build a **Cython** extension\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Alternative solutions I will mention briefly\n",
"\n",
" - Create a pure-C API and use `ctypes`\n",
" - Wrapper-generators (e.g. `swig`)\n",
" - Wrapping a command line tool\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sample C++ code\n",
" #include \"newimage/newimageall.h\"\n",
"\n",
" void process_volume(NEWIMAGE::volume4D<float> &invol)\n",
" {\n",
" // Do some clever stuff\n",
" invol.binarise(0.5);\n",
" }\n",
"\n",
" int main(int argc, char **argv)\n",
" {\n",
" char *input_file = argv[1];\n",
" char *output_file = argv[2];\n",
"\n",
" NEWIMAGE::volume4D<float> invol;\n",
" read_volume4D(invol, input_file);\n",
"\n",
" process_volume(invol);\n",
" save_volume4D(invol, output_file);\n",
" }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
"## First provide an entry point using C++ native types\n",
"\n",
" #include <vector>\n",
" #include <iostream>\n",
" \n",
" std::vector<float> process_vectors(std::vector<float> &input, int nx, int ny, int nz, int nt)\n",
" {\n",
" // This is just so we can see if the data has been copied\n",
" std::cerr << \"In C++ the input vector starts at address \" << &input[0] << std::endl;\n",
" \n",
" // Here we ought to check that nx, ny, nz, nt is consistent with overall length of input\n",
" \n",
" // Create a volume4D using an existing data buffer\n",
" // when we do this, NEWIMAGE will not try to delete the data buffer\n",
" NEWIMAGE::volume4D<float> invol(nx, ny, nz, nt, &input[0]);\n",
"\n",
" // Do our processing step\n",
" process_volume(invol);\n",
" \n",
" // Input data has been modified, so return it directly\n",
" return input;\n",
" }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# Array ordering\n",
"\n",
"\n",
"\n",
"If `input` is a 4D image, it's pretty clear that the first element is the voxel with co-ordinates `(0, 0, 0, 0)`\n",
"\n",
"But what is the next element?\n",
"\n",
"Is it voxel `(1, 0, 0, 0)`?\n",
"\n",
"Or `(0, 0, 0, 1)`?\n",
"\n",
"If the *first* axis is the one which varies fastest, we are using **Column-Major** ordering\n",
"If the *last* axis is the one which varies fastest, we are using **Row-Major** ordering"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## So, which is the standard?\n",
"\n",
"| Row-major | Column-major | \n",
"| ------------ | --------- | \n",
"| C/C++ native arrays | Fortran | \n",
"| Python/Numpy default | Matlab |\n",
"| SAS | FSL NEWIMAGE | \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### Here, we will need to make sure our Numpy arrays are passed as 1-dimensional float arrays in Column-major order to match NEWIMAGE\n",
"\n",
" data.flatten(order='F').astype(np.float32)\n",
" \n",
" - `'F'` stands for 'Fortran order'\n",
" - A C++ `float` is *almost* guaranteed to be 32 bits\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"\n",
"# Cython extension\n",
"\n",
"## First, the Cython wrapper\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# my_analysis_wrapper.pyx\n",
"\n",
"import numpy as np\n",
"cimport numpy as np\n",
"\n",
"from libcpp.vector cimport vector\n",
"\n",
"cdef extern from \"my_analysis.h\":\n",
" vector[float] process_vector(vector[float] &, int, int, int, int)\n",
" \n",
"def process_using_vectors(data):\n",
" # Save the dimensions of the data because we're going to flatten it to 1D array\n",
" # Should be checking the dimensions at this point!\n",
" nx, ny, nz, nt = data.shape\n",
"\n",
" # Convert data to 1D in Column-major (Fortran) order\n",
" # This always copies the data\n",
" data = data.flatten(order='F').astype(np.float32)\n",
"\n",
" # This line is just so we can see if the data is being copied\n",
" print(\"In python the input data starts at %X\" % data.__array_interface__['data'][0])\n",
"\n",
" # Call the C++ code\n",
" output = process_vectors(data, nx, ny, nz, nt)\n",
"\n",
" # Output is a 1D array in Fortran order - turn it back into a multidimensional array\n",
" # This should not copy the data\n",
" output = np.reshape(output, [nx, ny, nz, nt], order='F')\n",
" print(\"In python the reshaped data starts at %X\" % output.__array_interface__['data'][0])\n",
" \n",
" return output\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
"## Next, build the extension\n",
"\n",
"This would normally go in `setup.py`\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import numpy\n",
"\n",
"from setuptools import setup\n",
"from Cython.Build import cythonize\n",
"from setuptools.extension import Extension\n",
"\n",
"# My Cython extension\n",
"fsldir = os.environ[\"FSLDIR\"]\n",
"\n",
"ext = Extension(\"my_analysis_wrapper\",\n",
" sources=['my_analysis_wrapper.pyx',\n",
" 'my_analysis.cpp'],\n",
" language=\"c++\",\n",
" include_dirs=[\".\", numpy.get_include(), \n",
" os.path.join(fsldir, \"include\"), \n",
" os.path.join(fsldir, \"extras/include\"), \n",
" os.path.join(fsldir, \"extras/include/newmat\")], \n",
" libraries=['newimage', 'miscmaths', 'fslio', 'niftiio', 'newmat', 'znz', \"zlib\"],\n",
" library_dirs=[os.path.join(fsldir, \"lib\"), os.path.join(fsldir, \"extras/lib\")])\n",
"\n",
"# setup parameters\n",
"setup(name='my_app',\n",
" description='My Python application which calls C++',\n",
" ext_modules=cythonize(ext))"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"running build_ext\n",
"copying build\\lib.win-amd64-2.7\\my_analysis_wrapper.pyd -> \n"
]
}
],
"source": [
"%run setup.py build_ext"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADKRJREFUeJzt3W1sXvV5x/HfL3Yc7DQkTbulysPq\nwChrSFeBPMaDxgR0E5SMrGonkYpqY9WiTQVS2q2ibBKa9mJvECqqKjqPPkhrVMbSjFUdg9LSFqFp\nVpyEKhiXNktYHoGUpCTQ0Djk2gt7UsqI72P8/3PsS9+PhBSbw8UlJ9+c2/d9fG5HhADkNKftBQDU\nQ+BAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJNZdY2jPnN7o7VpQfO6C839RfKYkdelU8Zkv7l9U\nfKYkvTavylh1v1rnisbXelxl7pIlR4rPPPDKwuIzJanr5fLn0RPHDuvk8Vc6fnGrBN7btUCXLv5I\n8blXPrCr+ExJWjDn1eIzN/71muIzJemllV1V5i5+ZqzK3JfePbfK3L/c8M/FZ9659Q+Kz5SkBU/0\nFZ/5kwfubnQcD9GBxAgcSIzAgcQIHEiMwIHECBxIrFHgtq+x/YztnbZvr70UgDI6Bm67S9IXJF0r\naZWkdbZX1V4MwPQ1OYNfLGlnROyKiBOS7pe0tu5aAEpoEvgySXtP+3jfxOd+ie31todtD584dbzU\nfgCmoUngb3S96/+7cDkiBiNiICIGeub0Tn8zANPWJPB9klac9vFySQfqrAOgpCaBb5F0nu2Vtnsk\n3SDpm3XXAlBCx58mi4iTtm+W9IikLklfjoiR6psBmLZGPy4aEQ9JeqjyLgAK40o2IDECBxIjcCAx\nAgcSI3AgsSo3XdTcbsWSdxQf+/TL5W+OKEkjX1xdfObLq+vcTfS3r9tRZe6WB99XZe7Y/Dp3a733\njvI39Tx/68HiMyVpbGn5r8Hunze7EzBncCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgMQIH\nEiNwIDECBxIjcCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgsTp3VZWk7vJ/d7zwh33FZ0rS\ndY/8oPjMB5/9zeIzJenx/7qgytwf3nx3lbm/9Y+fqjJ3/v7jxWf++3/WedPccx+7qfjMX/xNs+M4\ngwOJETiQGIEDiRE4kBiBA4kROJBYx8Btr7D9Pdujtkdsb3grFgMwfU1eBz8p6dMRsc32AklbbT8a\nEU9X3g3ANHU8g0fEwYjYNvHrY5JGJS2rvRiA6ZvS9+C2+yVdKGmoxjIAymocuO23SfqGpE9GxNE3\n+PfrbQ/bHj5x8ucldwTwJjUK3PZcjce9MSI2v9ExETEYEQMRMdDTXeeacQBT0+RZdEv6kqTRiKjz\nEwkAqmhyBr9c0sckXWX7yYl/Plh5LwAFdHyZLCKekOS3YBcAhXElG5AYgQOJETiQGIEDiRE4kFiV\nmy6+urhLO9ctLD73u+sGi8+UpFt3f7j4zL94z+PFZ0rS379Y5xXK9z36iSpz+4fGqsz98Z/OKz7z\nypG1xWdK0rJ/mVt85qEjzV7Y4gwOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\nRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRW5a6qPfPHtPyiA8Xn3nPoiuIzJWnX\nv51bfOaDG6P4TEla+rtVfst01vryv1+StHvdO6vMXflP5d8u76wf1nlf+1NHthWfOedks105gwOJ\nETiQGIEDiRE4kBiBA4kROJAYgQOJNQ7cdpft7ba/VXMhAOVM5Qy+QdJorUUAlNcocNvLJV0n6b66\n6wAoqekZ/HOSPiPp1JkOsL3e9rDt4bGf1bnkD8DUdAzc9hpJL0TE1smOi4jBiBiIiIG5i/qKLQjg\nzWtyBr9c0vW2n5V0v6SrbH+t6lYAiugYeER8NiKWR0S/pBskPRYRN1bfDMC08To4kNiUfrg4Ir4v\n6ftVNgFQHGdwIDECBxIjcCAxAgcSI3AgsSq36Bw72aUDhxcWn3vBoueKz5SkFf+6v/jMf9iyufhM\nSfrgtj+rMvfs639aZe7cO5ZVmfvcnx8rPrP30V8vPlOSeo6Vv8Pua//xRKPjOIMDiRE4kBiBA4kR\nOJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4\nkBiBA4k5ovwdHxfOWxKXveujxec+//sris+UpMO/c6L4zPO+OFZ8piS9uHp+lbmrPj5SZe7zlx6t\nMvfjP95dfObQsXOLz5Sk31tY/mu7Ye1/6yc7jrvTcZzBgcQIHEiMwIHECBxIjMCBxAgcSKxR4LYX\n2d5k+0e2R21fWnsxANPX9N1F75H0cER8xHaPpL6KOwEopGPgts+WdIWkP5GkiDghqfyVIQCKa/IQ\n/RxJhyR9xfZ22/fZrnM5FYCimgTeLekiSfdGxIWSXpF0++sPsr3e9rDt4ROvHS+8JoA3o0ng+yTt\ni4ihiY83aTz4XxIRgxExEBEDPV29JXcE8CZ1DDwinpO01/b5E5+6WtLTVbcCUETTZ9FvkbRx4hn0\nXZJuqrcSgFIaBR4RT0oaqLwLgMK4kg1IjMCBxAgcSIzAgcQIHEiMwIHEmr4OPjX9UgyeKj72Vz9U\n5/qaJd85u/jMXXctKj5Tkvr/7kiVuUP9F1SZu7J7S5W5f7tjTfGZffPq3An34WffW3zmvuODjY7j\nDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIE\nDiRG4EBiBA4kRuBAYlVuuvhr8w7r8+c8UHxu/0hf8ZmS9NWjS4vPvH/9tcVnStLO27uqzP3oBY9X\nmfvwM1dUmfvq3ig+c9sffb74TEn60PuvKT7zwJFmN4jkDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\n1ihw27fZHrH9lO2v2z6r9mIApq9j4LaXSbpV0kBErJbUJemG2osBmL6mD9G7JfXa7pbUJ+lAvZUA\nlNIx8IjYL+kuSXskHZT0UkR8+/XH2V5ve9j28OHD5d8bHMDUNXmI/nZJayWtlLRU0nzbN77+uIgY\njIiBiBhYvJjn7oCZoEmJH5C0OyIORcSYpM2SLqu7FoASmgS+R9IltvtsW9LVkkbrrgWghCbfgw9J\n2iRpm6QdE//NYOW9ABTQ6OfBI+JOSXdW3gVAYTwbBiRG4EBiBA4kRuBAYgQOJOaI8nen7H3Xijjn\njz9VfO7KNbuKz5Skp57sLz6zd/mx4jMl6eJle6rMXfuO7VXmXtl7qMrca/7qtuIzn7+sfAuSdN4t\nQ8VnDsV3dTQOu9NxnMGBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCB\nxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcSq3FXV9iFJ/9Pg0HdK+mnxBeqZTfvOpl2l2bXv\nTNj13RHxK50OqhJ4U7aHI2KgtQWmaDbtO5t2lWbXvrNpVx6iA4kROJBY24EPtvz/n6rZtO9s2lWa\nXfvOml1b/R4cQF1tn8EBVNRa4Lavsf2M7Z22b29rj05sr7D9Pdujtkdsb2h7pyZsd9nebvtbbe8y\nGduLbG+y/aOJr/Glbe80Gdu3Tfw5eMr2122f1fZOk2klcNtdkr4g6VpJqySts72qjV0aOCnp0xHx\nXkmXSPrEDN71dBskjba9RAP3SHo4In5D0vs1g3e2vUzSrZIGImK1pC5JN7S71eTaOoNfLGlnROyK\niBOS7pe0tqVdJhURByNi28Svj2n8D+CydreanO3lkq6TdF/bu0zG9tmSrpD0JUmKiBMR8bN2t+qo\nW1Kv7W5JfZIOtLzPpNoKfJmkvad9vE8zPBpJst0v6UJJ5d/wuazPSfqMpFNtL9LBOZIOSfrKxLcT\n99me3/ZSZxIR+yXdJWmPpIOSXoqIb7e71eTaCvyN3rh8Rj+db/ttkr4h6ZMRcbTtfc7E9hpJL0TE\n1rZ3aaBb0kWS7o2ICyW9ImkmPx/zdo0/0lwpaamk+bZvbHerybUV+D5JK077eLlm8EMd23M1HvfG\niNjc9j4dXC7petvPavxbn6tsf63dlc5on6R9EfF/j4g2aTz4meoDknZHxKGIGJO0WdJlLe80qbYC\n3yLpPNsrbfdo/ImKb7a0y6RsW+PfI45GxN1t79NJRHw2IpZHRL/Gv66PRcSMPMtExHOS9to+f+JT\nV0t6usWVOtkj6RLbfRN/Lq7WDH5SUBp/iPSWi4iTtm+W9IjGn4n8ckSMtLFLA5dL+pikHbafnPjc\nHRHxUIs7ZXKLpI0Tf9HvknRTy/ucUUQM2d4kaZvGX13Zrhl+VRtXsgGJcSUbkBiBA4kROJAYgQOJ\nETiQGIEDiRE4kBiBA4n9L/yuy9QpJgQiAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8d4a6d8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"In python the input data starts at A55A980\n",
"In C++ the input vector starts at address 000000000A87D5A0\n",
"\n",
"In python the reshaped data starts at A6B2040\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAACnZJREFUeJzt3duvnXMex/HPZ3ar1RpxGDfaZpBg\nphGG7DgmLlSCIdzMBQnJuOnNOEYizI1/QIQLkTQON4SLciEiauJwMTcdWwlqIw2GOkSHjAoZdfjM\nxd6TlNG9nnY/P89+vt6vRNK9PZZPlvX2rLX26lMnEYCafjX0AADtEDhQGIEDhRE4UBiBA4UROFAY\ngQOFEThQGIEDhS1rcaMHeUVWanXvt3vCyV/1fputvPXKqqEnlPZLfyz8R19qT772pOPc4qOqh/qI\nnOENvd/ulg9f7v02W7ng6D8MPaG0X/pjYWue0e58NjFwnqIDhRE4UBiBA4UROFAYgQOFEThQWKfA\nbV9o+03bO2zf0noUgH5MDNz2lKS7JV0kab2kK2yvbz0MwOJ1OYOfLmlHkreT7JH0iKTL2s4C0Icu\nga+R9P5eX++c/94P2N5oe8b2zDf6uq99ABahS+A/9XG4//t8a5JNSaaTTC/XisUvA7BoXQLfKWnd\nXl+vlfRhmzkA+tQl8BckHW/7WNsHSbpc0uNtZwHow8TfLprkW9vXSNoiaUrS/Um2N18GYNE6/X7w\nJE9KerLxFgA945NsQGEEDhRG4EBhBA4URuBAYU2uqjo2Y7pAYquLDY7pPpDGt3conMGBwggcKIzA\ngcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCB\nwggcKIzAgcJGdVXVVlfSbHWl0hbGdh+M6eqnY3ocnH7BV52O4wwOFEbgQGEEDhRG4EBhBA4URuBA\nYRMDt73O9nO2Z21vt339zzEMwOJ1+Tn4t5JuSrLN9q8lvWj7b0leb7wNwCJNPIMn+SjJtvlffyFp\nVtKa1sMALN5+vQa3fYykUyVtbTEGQL86f1TV9iGSHpV0Q5LdP/H3N0raKEkrtaq3gQAOXKczuO3l\nmov7oSSP/dQxSTYlmU4yvVwr+twI4AB1eRfdku6TNJvkjvaTAPSlyxn8HElXSTrP9svzf/2x8S4A\nPZj4GjzJ3yX5Z9gCoGd8kg0ojMCBwggcKIzAgcIIHChsVBddHNNF8VrhPpgzpvuhxYUn38qnnY7j\nDA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEE\nDhRG4EBhBA4URuBAYQQOFOYkvd/o9Ckr848t63q/3VZaXPVybMZ0lVKJ/2Zb84x257OJf2YgZ3Cg\nMAIHCiNwoDACBwojcKAwAgcKI3CgsM6B256y/ZLtJ1oOAtCf/TmDXy9pttUQAP3rFLjttZIulnRv\n2zkA+tT1DH6npJslfb+vA2xvtD1je2bXp9/1Mg7A4kwM3PYlkj5J8uJCxyXZlGQ6yfRRR071NhDA\ngetyBj9H0qW235X0iKTzbD/YdBWAXkwMPMmtSdYmOUbS5ZKeTXJl82UAFo2fgwOFLdufg5M8L+n5\nJksA9I4zOFAYgQOFEThQGIEDhRE4UNh+vYuO7rhKaVst7t+x3QddcAYHCiNwoDACBwojcKAwAgcK\nI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwpr\nclXVt15ZNaorVHKFznZXgR3T/TCmK+GefsFXnY7jDA4URuBAYQQOFEbgQGEEDhRG4EBhnQK3fZjt\nzbbfsD1r+6zWwwAsXtefg98l6akkf7J9kKRVDTcB6MnEwG0fKulcSX+WpCR7JO1pOwtAH7o8RT9O\n0i5JD9h+yfa9tlc33gWgB10CXybpNEn3JDlV0peSbvnxQbY32p6xPfONvu55JoAD0SXwnZJ2Jtk6\n//VmzQX/A0k2JZlOMr1cK/rcCOAATQw8yceS3rd94vy3Nkh6vekqAL3o+i76tZIemn8H/W1JV7eb\nBKAvnQJP8rKk6cZbAPSMT7IBhRE4UBiBA4UROFAYgQOFEThQWJOrqp5w8lfasmU8Vyptcbtju0rp\nmK5+iu44gwOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIED\nhRE4UBiBA4UROFAYgQOFEThQWJOLLrbS6kKGLbS6iOGY7gOJizlKbe6Dt/Jpp+M4gwOFEThQGIED\nhRE4UBiBA4UROFAYgQOFdQrc9o22t9t+zfbDtle2HgZg8SYGbnuNpOskTSc5SdKUpMtbDwOweF2f\noi+TdLDtZZJWSfqw3SQAfZkYeJIPJN0u6T1JH0n6PMnTPz7O9kbbM7Zndn36Xf9LAey3Lk/RD5d0\nmaRjJR0tabXtK398XJJNSaaTTB915FT/SwHsty5P0c+X9E6SXUm+kfSYpLPbzgLQhy6BvyfpTNur\nbFvSBkmzbWcB6EOX1+BbJW2WtE3Sq/P/zKbGuwD0oNPvB09ym6TbGm8B0DM+yQYURuBAYQQOFEbg\nQGEEDhTmJL3f6KE+Imd4Q++3O7YriqKdFlcqbfX4arF1a57R7nzmScdxBgcKI3CgMAIHCiNwoDAC\nBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIH\nCmtyVVXbuyT9s8Ohv5H0r94HtDOmvWPaKo1r71LY+tskR006qEngXdmeSTI92ID9NKa9Y9oqjWvv\nmLbyFB0ojMCBwoYOfNPA//79Naa9Y9oqjWvvaLYO+hocQFtDn8EBNDRY4LYvtP2m7R22bxlqxyS2\n19l+zvas7e22rx96Uxe2p2y/ZPuJobcsxPZhtjfbfmP+Pj5r6E0LsX3j/OPgNdsP21459KaFDBK4\n7SlJd0u6SNJ6SVfYXj/Elg6+lXRTkt9LOlPSX5bw1r1dL2l26BEd3CXpqSS/k3SKlvBm22skXSdp\nOslJkqYkXT7sqoUNdQY/XdKOJG8n2SPpEUmXDbRlQUk+SrJt/tdfaO4BuGbYVQuzvVbSxZLuHXrL\nQmwfKulcSfdJUpI9Sf497KqJlkk62PYySaskfTjwngUNFfgaSe/v9fVOLfFoJMn2MZJOlbR12CUT\n3SnpZknfDz1kguMk7ZL0wPzLiXttrx561L4k+UDS7ZLek/SRpM+TPD3sqoUNFfhP/cHlS/rtfNuH\nSHpU0g1Jdg+9Z19sXyLpkyQvDr2lg2WSTpN0T5JTJX0paSm/H3O45p5pHivpaEmrbV857KqFDRX4\nTknr9vp6rZbwUx3byzUX90NJHht6zwTnSLrU9ruae+lznu0Hh520Tzsl7Uzyv2dEmzUX/FJ1vqR3\nkuxK8o2kxySdPfCmBQ0V+AuSjrd9rO2DNPdGxeMDbVmQbWvuNeJskjuG3jNJkluTrE1yjObu12eT\nLMmzTJKPJb1v+8T5b22Q9PqAkyZ5T9KZtlfNPy42aAm/KSjNPUX62SX51vY1krZo7p3I+5NsH2JL\nB+dIukrSq7Zfnv/eX5M8OeCmSq6V9ND8/+jflnT1wHv2KclW25slbdPcT1de0hL/VBufZAMK45Ns\nQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhT2X771bWTJmQ2jAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x9ab35f8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy\n",
"import my_analysis_wrapper\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data = numpy.random.rand(10, 10, 10, 10)\n",
"\n",
"plt.imshow(data[:,:,5,5])\n",
"plt.show()\n",
"\n",
"output = my_analysis_wrapper.process_with_vectors(data)\n",
"plt.imshow(output[:,:,5,5])\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Great, it worked\n",
"\n",
"## But we did copy our data - several times\n",
"\n",
" - We copied the input once in Python to flatten it in the right order\n",
" - Cython copied it again, because the pointer to the memory in the `vector` is different from the pointer to the data in the Numpy array.\n",
" - Similarly, converting the output `vector` back to a Numpy array would involve a copy\n",
" \n",
"\n",
"## Do we care?\n",
"\n",
"It depends on:\n",
"\n",
" - Is the processing time per-voxel much greater than the data copying time?\n",
" - If so, copying will not add significant overhead\n",
" - Might the data be comparable in size to system memory?\n",
" - If so, copying may result in swapping and significant slowness\n",
" \n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solution with less copying\n",
"\n",
"We can't use a `vector`, it needs to be free to manage its own memory, not use an existing fixed buffer.\n",
"\n",
"Instead pass a pure C array:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
" void process_array(float *input, int nx, int ny, int nz, int nt)\n",
" {\n",
" cerr << \"In C++ the input array starts at address \" << input << std::endl;\n",
"\n",
" NEWIMAGE::volume4D<float> invol(nx, ny, nz, nt, input);\n",
"\n",
" process_volume(invol);\n",
" \n",
" // Volume data buffer is modified directly, so provided it was not copied\n",
" // we should be able to see the output directly in Python \n",
" }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" - Note that we cannot check the size of the `input` buffer! It had better be correct"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# my_analysis_wrapper.pyx\n",
"\n",
"import numpy as np\n",
"cimport numpy as np\n",
"\n",
"from libcpp.vector cimport vector\n",
"\n",
"cdef extern from \"my_analysis.h\":\n",
" void process_array(float *, int, int, int, int)\n",
"\n",
"def process_c(np.ndarray[np.float32_t, ndim=1] input,\n",
" nx, ny, nz, nt):\n",
" process_array(&input[0], nx, ny, nz, nt)\n",
"\n",
"def process_with_arrays(data):\n",
" # Save the dimension of the data because we're going to flatten it to 1D array\n",
" nx, ny, nz, nt = data.shape\n",
"\n",
" # Convert data to 1D in Column-major (Fortran) order\n",
" data = data.flatten(order='F').astype(np.float32)\n",
"\n",
" print(\"In python the data starts at %X\" % data.__array_interface__['data'][0])\n",
"\n",
" process_c(data, nx, ny, nz, nt)\n",
"\n",
" data = np.reshape(data, [nx, ny, nz, nt], order='F')\n",
" print(\"In python the reshaped data starts at %X\" % data.__array_interface__['data'][0])\n",
" \n",
" return data\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADKRJREFUeJzt3W1sXvV5x/HfL3Yc7DQkTbulysPq\nwChrSFeBPMaDxgR0E5SMrGonkYpqY9WiTQVS2q2ibBKa9mJvECqqKjqPPkhrVMbSjFUdg9LSFqFp\nVpyEKhiXNktYHoGUpCTQ0Djk2gt7UsqI72P8/3PsS9+PhBSbw8UlJ9+c2/d9fG5HhADkNKftBQDU\nQ+BAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJNZdY2jPnN7o7VpQfO6C839RfKYkdelU8Zkv7l9U\nfKYkvTavylh1v1rnisbXelxl7pIlR4rPPPDKwuIzJanr5fLn0RPHDuvk8Vc6fnGrBN7btUCXLv5I\n8blXPrCr+ExJWjDn1eIzN/71muIzJemllV1V5i5+ZqzK3JfePbfK3L/c8M/FZ9659Q+Kz5SkBU/0\nFZ/5kwfubnQcD9GBxAgcSIzAgcQIHEiMwIHECBxIrFHgtq+x/YztnbZvr70UgDI6Bm67S9IXJF0r\naZWkdbZX1V4MwPQ1OYNfLGlnROyKiBOS7pe0tu5aAEpoEvgySXtP+3jfxOd+ie31todtD584dbzU\nfgCmoUngb3S96/+7cDkiBiNiICIGeub0Tn8zANPWJPB9klac9vFySQfqrAOgpCaBb5F0nu2Vtnsk\n3SDpm3XXAlBCx58mi4iTtm+W9IikLklfjoiR6psBmLZGPy4aEQ9JeqjyLgAK40o2IDECBxIjcCAx\nAgcSI3AgsSo3XdTcbsWSdxQf+/TL5W+OKEkjX1xdfObLq+vcTfS3r9tRZe6WB99XZe7Y/Dp3a733\njvI39Tx/68HiMyVpbGn5r8Hunze7EzBncCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgMQIH\nEiNwIDECBxIjcCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgsTp3VZWk7vJ/d7zwh33FZ0rS\ndY/8oPjMB5/9zeIzJenx/7qgytwf3nx3lbm/9Y+fqjJ3/v7jxWf++3/WedPccx+7qfjMX/xNs+M4\ngwOJETiQGIEDiRE4kBiBA4kROJBYx8Btr7D9Pdujtkdsb3grFgMwfU1eBz8p6dMRsc32AklbbT8a\nEU9X3g3ANHU8g0fEwYjYNvHrY5JGJS2rvRiA6ZvS9+C2+yVdKGmoxjIAymocuO23SfqGpE9GxNE3\n+PfrbQ/bHj5x8ucldwTwJjUK3PZcjce9MSI2v9ExETEYEQMRMdDTXeeacQBT0+RZdEv6kqTRiKjz\nEwkAqmhyBr9c0sckXWX7yYl/Plh5LwAFdHyZLCKekOS3YBcAhXElG5AYgQOJETiQGIEDiRE4kFiV\nmy6+urhLO9ctLD73u+sGi8+UpFt3f7j4zL94z+PFZ0rS379Y5xXK9z36iSpz+4fGqsz98Z/OKz7z\nypG1xWdK0rJ/mVt85qEjzV7Y4gwOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\nRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRW5a6qPfPHtPyiA8Xn3nPoiuIzJWnX\nv51bfOaDG6P4TEla+rtVfst01vryv1+StHvdO6vMXflP5d8u76wf1nlf+1NHthWfOedks105gwOJ\nETiQGIEDiRE4kBiBA4kROJAYgQOJNQ7cdpft7ba/VXMhAOVM5Qy+QdJorUUAlNcocNvLJV0n6b66\n6wAoqekZ/HOSPiPp1JkOsL3e9rDt4bGf1bnkD8DUdAzc9hpJL0TE1smOi4jBiBiIiIG5i/qKLQjg\nzWtyBr9c0vW2n5V0v6SrbH+t6lYAiugYeER8NiKWR0S/pBskPRYRN1bfDMC08To4kNiUfrg4Ir4v\n6ftVNgFQHGdwIDECBxIjcCAxAgcSI3AgsSq36Bw72aUDhxcWn3vBoueKz5SkFf+6v/jMf9iyufhM\nSfrgtj+rMvfs639aZe7cO5ZVmfvcnx8rPrP30V8vPlOSeo6Vv8Pua//xRKPjOIMDiRE4kBiBA4kR\nOJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4\nkBiBA4k5ovwdHxfOWxKXveujxec+//sris+UpMO/c6L4zPO+OFZ8piS9uHp+lbmrPj5SZe7zlx6t\nMvfjP95dfObQsXOLz5Sk31tY/mu7Ye1/6yc7jrvTcZzBgcQIHEiMwIHECBxIjMCBxAgcSKxR4LYX\n2d5k+0e2R21fWnsxANPX9N1F75H0cER8xHaPpL6KOwEopGPgts+WdIWkP5GkiDghqfyVIQCKa/IQ\n/RxJhyR9xfZ22/fZrnM5FYCimgTeLekiSfdGxIWSXpF0++sPsr3e9rDt4ROvHS+8JoA3o0ng+yTt\ni4ihiY83aTz4XxIRgxExEBEDPV29JXcE8CZ1DDwinpO01/b5E5+6WtLTVbcCUETTZ9FvkbRx4hn0\nXZJuqrcSgFIaBR4RT0oaqLwLgMK4kg1IjMCBxAgcSIzAgcQIHEiMwIHEmr4OPjX9UgyeKj72Vz9U\n5/qaJd85u/jMXXctKj5Tkvr/7kiVuUP9F1SZu7J7S5W5f7tjTfGZffPq3An34WffW3zmvuODjY7j\nDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIE\nDiRG4EBiBA4kRuBAYlVuuvhr8w7r8+c8UHxu/0hf8ZmS9NWjS4vPvH/9tcVnStLO27uqzP3oBY9X\nmfvwM1dUmfvq3ig+c9sffb74TEn60PuvKT7zwJFmN4jkDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\n1ihw27fZHrH9lO2v2z6r9mIApq9j4LaXSbpV0kBErJbUJemG2osBmL6mD9G7JfXa7pbUJ+lAvZUA\nlNIx8IjYL+kuSXskHZT0UkR8+/XH2V5ve9j28OHD5d8bHMDUNXmI/nZJayWtlLRU0nzbN77+uIgY\njIiBiBhYvJjn7oCZoEmJH5C0OyIORcSYpM2SLqu7FoASmgS+R9IltvtsW9LVkkbrrgWghCbfgw9J\n2iRpm6QdE//NYOW9ABTQ6OfBI+JOSXdW3gVAYTwbBiRG4EBiBA4kRuBAYgQOJOaI8nen7H3Xijjn\njz9VfO7KNbuKz5Skp57sLz6zd/mx4jMl6eJle6rMXfuO7VXmXtl7qMrca/7qtuIzn7+sfAuSdN4t\nQ8VnDsV3dTQOu9NxnMGBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCB\nxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcSq3FXV9iFJ/9Pg0HdK+mnxBeqZTfvOpl2l2bXv\nTNj13RHxK50OqhJ4U7aHI2KgtQWmaDbtO5t2lWbXvrNpVx6iA4kROJBY24EPtvz/n6rZtO9s2lWa\nXfvOml1b/R4cQF1tn8EBVNRa4Lavsf2M7Z22b29rj05sr7D9Pdujtkdsb2h7pyZsd9nebvtbbe8y\nGduLbG+y/aOJr/Glbe80Gdu3Tfw5eMr2122f1fZOk2klcNtdkr4g6VpJqySts72qjV0aOCnp0xHx\nXkmXSPrEDN71dBskjba9RAP3SHo4In5D0vs1g3e2vUzSrZIGImK1pC5JN7S71eTaOoNfLGlnROyK\niBOS7pe0tqVdJhURByNi28Svj2n8D+CydreanO3lkq6TdF/bu0zG9tmSrpD0JUmKiBMR8bN2t+qo\nW1Kv7W5JfZIOtLzPpNoKfJmkvad9vE8zPBpJst0v6UJJ5d/wuazPSfqMpFNtL9LBOZIOSfrKxLcT\n99me3/ZSZxIR+yXdJWmPpIOSXoqIb7e71eTaCvyN3rh8Rj+db/ttkr4h6ZMRcbTtfc7E9hpJL0TE\n1rZ3aaBb0kWS7o2ICyW9ImkmPx/zdo0/0lwpaamk+bZvbHerybUV+D5JK077eLlm8EMd23M1HvfG\niNjc9j4dXC7petvPavxbn6tsf63dlc5on6R9EfF/j4g2aTz4meoDknZHxKGIGJO0WdJlLe80qbYC\n3yLpPNsrbfdo/ImKb7a0y6RsW+PfI45GxN1t79NJRHw2IpZHRL/Gv66PRcSMPMtExHOS9to+f+JT\nV0t6usWVOtkj6RLbfRN/Lq7WDH5SUBp/iPSWi4iTtm+W9IjGn4n8ckSMtLFLA5dL+pikHbafnPjc\nHRHxUIs7ZXKLpI0Tf9HvknRTy/ucUUQM2d4kaZvGX13Zrhl+VRtXsgGJcSUbkBiBA4kROJAYgQOJ\nETiQGIEDiRE4kBiBA4n9L/yuy9QpJgQiAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xa4908d0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"In python the data starts at A870040\n",
"In C++ the input array starts at address 000000000A870040\n",
"\n",
"In python the reshaped data starts at A870040\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAACnZJREFUeJzt3duvnXMex/HPZ3ar1RpxGDfaZpBg\nphGG7DgmLlSCIdzMBQnJuOnNOEYizI1/QIQLkTQON4SLciEiauJwMTcdWwlqIw2GOkSHjAoZdfjM\nxd6TlNG9nnY/P89+vt6vRNK9PZZPlvX2rLX26lMnEYCafjX0AADtEDhQGIEDhRE4UBiBA4UROFAY\ngQOFEThQGIEDhS1rcaMHeUVWanXvt3vCyV/1fputvPXKqqEnlPZLfyz8R19qT772pOPc4qOqh/qI\nnOENvd/ulg9f7v02W7ng6D8MPaG0X/pjYWue0e58NjFwnqIDhRE4UBiBA4UROFAYgQOFEThQWKfA\nbV9o+03bO2zf0noUgH5MDNz2lKS7JV0kab2kK2yvbz0MwOJ1OYOfLmlHkreT7JH0iKTL2s4C0Icu\nga+R9P5eX++c/94P2N5oe8b2zDf6uq99ABahS+A/9XG4//t8a5JNSaaTTC/XisUvA7BoXQLfKWnd\nXl+vlfRhmzkA+tQl8BckHW/7WNsHSbpc0uNtZwHow8TfLprkW9vXSNoiaUrS/Um2N18GYNE6/X7w\nJE9KerLxFgA945NsQGEEDhRG4EBhBA4URuBAYU2uqjo2Y7pAYquLDY7pPpDGt3conMGBwggcKIzA\ngcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCB\nwggcKIzAgcJGdVXVVlfSbHWl0hbGdh+M6eqnY3ocnH7BV52O4wwOFEbgQGEEDhRG4EBhBA4URuBA\nYRMDt73O9nO2Z21vt339zzEMwOJ1+Tn4t5JuSrLN9q8lvWj7b0leb7wNwCJNPIMn+SjJtvlffyFp\nVtKa1sMALN5+vQa3fYykUyVtbTEGQL86f1TV9iGSHpV0Q5LdP/H3N0raKEkrtaq3gQAOXKczuO3l\nmov7oSSP/dQxSTYlmU4yvVwr+twI4AB1eRfdku6TNJvkjvaTAPSlyxn8HElXSTrP9svzf/2x8S4A\nPZj4GjzJ3yX5Z9gCoGd8kg0ojMCBwggcKIzAgcIIHChsVBddHNNF8VrhPpgzpvuhxYUn38qnnY7j\nDA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEE\nDhRG4EBhBA4URuBAYQQOFOYkvd/o9Ckr848t63q/3VZaXPVybMZ0lVKJ/2Zb84x257OJf2YgZ3Cg\nMAIHCiNwoDACBwojcKAwAgcKI3CgsM6B256y/ZLtJ1oOAtCf/TmDXy9pttUQAP3rFLjttZIulnRv\n2zkA+tT1DH6npJslfb+vA2xvtD1je2bXp9/1Mg7A4kwM3PYlkj5J8uJCxyXZlGQ6yfRRR071NhDA\ngetyBj9H0qW235X0iKTzbD/YdBWAXkwMPMmtSdYmOUbS5ZKeTXJl82UAFo2fgwOFLdufg5M8L+n5\nJksA9I4zOFAYgQOFEThQGIEDhRE4UNh+vYuO7rhKaVst7t+x3QddcAYHCiNwoDACBwojcKAwAgcK\nI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwpr\nclXVt15ZNaorVHKFznZXgR3T/TCmK+GefsFXnY7jDA4URuBAYQQOFEbgQGEEDhRG4EBhnQK3fZjt\nzbbfsD1r+6zWwwAsXtefg98l6akkf7J9kKRVDTcB6MnEwG0fKulcSX+WpCR7JO1pOwtAH7o8RT9O\n0i5JD9h+yfa9tlc33gWgB10CXybpNEn3JDlV0peSbvnxQbY32p6xPfONvu55JoAD0SXwnZJ2Jtk6\n//VmzQX/A0k2JZlOMr1cK/rcCOAATQw8yceS3rd94vy3Nkh6vekqAL3o+i76tZIemn8H/W1JV7eb\nBKAvnQJP8rKk6cZbAPSMT7IBhRE4UBiBA4UROFAYgQOFEThQWJOrqp5w8lfasmU8Vyptcbtju0rp\nmK5+iu44gwOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIED\nhRE4UBiBA4UROFAYgQOFEThQWJOLLrbS6kKGLbS6iOGY7gOJizlKbe6Dt/Jpp+M4gwOFEThQGIED\nhRE4UBiBA4UROFAYgQOFdQrc9o22t9t+zfbDtle2HgZg8SYGbnuNpOskTSc5SdKUpMtbDwOweF2f\noi+TdLDtZZJWSfqw3SQAfZkYeJIPJN0u6T1JH0n6PMnTPz7O9kbbM7Zndn36Xf9LAey3Lk/RD5d0\nmaRjJR0tabXtK398XJJNSaaTTB915FT/SwHsty5P0c+X9E6SXUm+kfSYpLPbzgLQhy6BvyfpTNur\nbFvSBkmzbWcB6EOX1+BbJW2WtE3Sq/P/zKbGuwD0oNPvB09ym6TbGm8B0DM+yQYURuBAYQQOFEbg\nQGEEDhTmJL3f6KE+Imd4Q++3O7YriqKdFlcqbfX4arF1a57R7nzmScdxBgcKI3CgMAIHCiNwoDAC\nBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIH\nCmtyVVXbuyT9s8Ohv5H0r94HtDOmvWPaKo1r71LY+tskR006qEngXdmeSTI92ID9NKa9Y9oqjWvv\nmLbyFB0ojMCBwoYOfNPA//79Naa9Y9oqjWvvaLYO+hocQFtDn8EBNDRY4LYvtP2m7R22bxlqxyS2\n19l+zvas7e22rx96Uxe2p2y/ZPuJobcsxPZhtjfbfmP+Pj5r6E0LsX3j/OPgNdsP21459KaFDBK4\n7SlJd0u6SNJ6SVfYXj/Elg6+lXRTkt9LOlPSX5bw1r1dL2l26BEd3CXpqSS/k3SKlvBm22skXSdp\nOslJkqYkXT7sqoUNdQY/XdKOJG8n2SPpEUmXDbRlQUk+SrJt/tdfaO4BuGbYVQuzvVbSxZLuHXrL\nQmwfKulcSfdJUpI9Sf497KqJlkk62PYySaskfTjwngUNFfgaSe/v9fVOLfFoJMn2MZJOlbR12CUT\n3SnpZknfDz1kguMk7ZL0wPzLiXttrx561L4k+UDS7ZLek/SRpM+TPD3sqoUNFfhP/cHlS/rtfNuH\nSHpU0g1Jdg+9Z19sXyLpkyQvDr2lg2WSTpN0T5JTJX0paSm/H3O45p5pHivpaEmrbV857KqFDRX4\nTknr9vp6rZbwUx3byzUX90NJHht6zwTnSLrU9ruae+lznu0Hh520Tzsl7Uzyv2dEmzUX/FJ1vqR3\nkuxK8o2kxySdPfCmBQ0V+AuSjrd9rO2DNPdGxeMDbVmQbWvuNeJskjuG3jNJkluTrE1yjObu12eT\nLMmzTJKPJb1v+8T5b22Q9PqAkyZ5T9KZtlfNPy42aAm/KSjNPUX62SX51vY1krZo7p3I+5NsH2JL\nB+dIukrSq7Zfnv/eX5M8OeCmSq6V9ND8/+jflnT1wHv2KclW25slbdPcT1de0hL/VBufZAMK45Ns\nQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhT2X771bWTJmQ2jAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xaa4b128>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy\n",
"import my_analysis_wrapper\n",
"\n",
"plt.imshow(data[:,:,5,5])\n",
"plt.show()\n",
"\n",
"output = my_analysis_wrapper.process_with_arrays(data)\n",
"plt.imshow(output[:,:,5,5])\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" - We copied our input data once when we flattened it into Fortran order\n",
" - C++ code operated directly on that buffer\n",
" - Output data was not copied when reshaped "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Summary\n",
"\n",
" - Easy-ish recipe for passing Numpy arrays to C++ either as a `std::vector` or as a `float *` array.\n",
" - Can construct `NEWIMAGE::volume<float>` or other complex containers from within C++\n",
" - Easy modification to instead use `double` array\n",
" - Can pass Python strings to `C++ std::string` and other C++ containers in a similar way\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Alternatives (Briefly!)\n",
"\n",
"## Why?\n",
"\n",
"\n",
"\n",
"## Can we assume that our newly compiled Cython/C++ code will link correctly with `libnewimage.a`?\n",
"\n",
" - Often, yes, but in general, no\n",
" - It depends on the compiler used for each - ideally they need to match\n",
" - The compiler of your Cython extension is **fixed** by the version of Python you are using\n",
" - Might need to recompile your dependency libraries with this compiler\n",
" - If you can't do this (e.g. commercial binary) you may be **stuck**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Three common problem scenarios\n",
"\n",
" - On Mac, need to use the same C++ standard library (either `libc++` or `libstdc++`)\n",
" - On Python 2, C++ compiler will be very old (may not support all of C++11)\n",
" - On Windows, no two versions of VC++ are binary compatible\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Alternative approach where this is a problem\n",
"\n",
" - Make your code a shared library with a *Pure C* API\n",
" - Use `ctypes`\n",
" \n",
"## `ctypes`\n",
"\n",
" - Part of Python standard library\n",
" - Allows you to call library functions from 'C' shared library (not C++)\n",
" - **Pure 'C' libraries are (generally) binary compatible on a given platform**\n",
" - We have to load the library manually\n",
" - We have to tell Python about the input and return types\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pure 'C' API for our processing function\n",
"\n",
" // my_analysis_purec.h\n",
"\n",
" #ifdef __cplusplus\n",
" extern \"C\" {\n",
" #endif\n",
" \n",
" void process_array(float *input, int nx, int ny, int nz, int nt);\n",
" \n",
" #ifdef __cplusplus\n",
" }\n",
" #endif\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" - Note need to use `extern \"C\" { }` if we may want to include this header from C++\n",
" - **On Windows, additional code is required to make the shared library (DLL) link correctly!**\n",
" - Note that the implementation *can* use C++"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import ctypes import CDLL, c_int, c_char_p\n",
"import numpy as np\n",
"import numpy.ctypeslib\n",
"\n",
"def process_ctypes(data):\n",
" \n",
" clib = ctypes.cdll.LoadLibrary(\"libmy_analysis.so\")\n",
"\n",
" # This is the data type of a 1-D Numpy array\n",
" c_float_arr = numpy.ctypeslib.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS')\n",
"\n",
" # This specifies the argument types for the 'process_array' function\n",
" # This is not actually required but enables ctypes to do some error checking\n",
" clib.process_array.argtypes = [c_float_arr, c_int, c_int, c_int, c_int]\n",
"\n",
" # Put the Numpy data into row-major order and make sure it is contiguous in memory\n",
" item = np.ascontiguousarray(item.flatten(order='F'), dtype=np.float32)\n",
" \n",
" clib.process_carray(data, shape[0], shape[1], shape[2], shape[3])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comparison with Cython\n",
"\n",
"## Cython advantages\n",
"\n",
" - Python wrapper is probably a little quicker and cleaner to write\n",
" - Don't need to produce a new pure-C API provided we have an entry point using C++ types\n",
" - Potential for better error-checking\n",
" - Might integrate well if you are already using Cython\n",
" - No need to build a shared library\n",
" \n",
"## `ctypes` advantages\n",
"\n",
" - Part of the Python standard library\n",
" - No additional compile step in `setup.py`\n",
" - Binary compatibility - no need to be tied to a single (perhaps old) C++ compiler\n",
" \n",
"## Conclusion?\n",
"\n",
" - Use Cython when you can, `ctypes` if you have to\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Other alternatives (briefly for completeness)\n",
"\n",
"## Wrapper Generators (SWIG, shiboken, others)\n",
"\n",
" - Run a preprocessor on your C++ code to generate an 'automatic' Python wrapper\n",
" - Generally need to write an 'interface specifier' for each C++ header to describe how it interfaces to Python\n",
" - Great when you have a large, complex C++ API which needs to be consistently exposed to Python (e.g. wx/wxpython, QT/PyQT)\n",
" - SWIG can support other languages as well as Python\n",
" - Probably more work than Cython/ctypes if you have a single simple API\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Just Wrap the Command Line\n",
"\n",
" - Quick and dirty\n",
" - Copies all data to/from filesystem\n",
" - Need to go via command line API, create temp directories, etc\n",
" - Don't overlook as a way of getting started - can move to other solution later\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADJxJREFUeJzt3V+s1/V9x/HXi3OAI+eUwopzCKxC\ntVps12BPOiuJWcVk/WOlSXdhV01nlpLp6p/WrLVNGrdkF72wziY6EkI16XC6hnJhq1X7x27r6kiP\nwLR4SnqGFU9FRQGhWMAD716cs4Q6Ob/v4Xw+fs955/lISDiHr2/fIefJ93d+53c+xxEhADnNaHsB\nAPUQOJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJddcY2jOvJ/oW9hWfO7/7UPGZkjT84oLiM6Pv\nePGZkjRjRp253UNHqsyde/6xKnMP7phdfOay5fuLz5Sk/32ifAuHdUhH44g7XVcl8L6FfVr9zcuK\nz/3E2waKz5SkL97x18Vn/vZP6/xj1Nd7uMrc0z8+VGXupd+qE82jH1xWfOa3vved4jMl6ROLLyw+\nc3P8sNF1PEQHEiNwIDECBxIjcCAxAgcSI3AgsUaB2/6Q7R22h2zfXHspAGV0DNx2l6Q7JX1Y0nJJ\nn7S9vPZiACavyR38/ZKGImJnRByVdJ+k1XXXAlBCk8AXSXr2hLeHx973e2yvsT1ge+Dw/jqvtgIw\nMU0Cf6PXu/6/o1gjYl1E9EdEf8+8nslvBmDSmgQ+LGnJCW8vlvRcnXUAlNQk8J9JOsf2UtuzJF0h\n6f66awEooeN3k0XEiO3PSnpYUpekuyJie/XNAExao28XjYgHJT1YeRcAhfFKNiAxAgcSI3AgMQIH\nEiNwIDHX+Png576nJ9be//bic796Xn/xmZJ09k87Hk45YT984H3FZ0rS0bl1TlX9o8fq/Jz4tz7x\ncpW5g1+cV3zmoge6is+UpNtuvaP4zKs/tluDT3Q+VZU7OJAYgQOJETiQGIEDiRE4kBiBA4kROJAY\ngQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQWKOfTTZR+471\natO+8qeKzji7/EmtkjR0zeziMz+4dkvxmZL0zOXlTxOVpKf+fknni07BW7ceqzJ36X3lZ8758q7y\nQyXtOfaW4jNH4oVG13EHBxIjcCAxAgcSI3AgMQIHEiNwILGOgdteYvtR24O2t9u+4c1YDMDkNfk6\n+IikmyJii+23SHrc9vcj4qnKuwGYpI538IjYHRFbxn5/UNKgpEW1FwMweRP6HNz2WZJWSNpcYxkA\nZTUO3HafpG9LujEiDrzBn6+xPWB74Lf7DpfcEcApahS47ZkajfueiNj0RtdExLqI6I+I/tPm95Tc\nEcApavIsuiV9Q9JgRNxWfyUApTS5g6+UdJWkS2xvG/v1kcp7ASig45fJIuInkvwm7AKgMF7JBiRG\n4EBiBA4kRuBAYgQOJFbl0MUjx7u18zcLyg8eqXOAXw3/+W8XVJk78+NRZ+7LVcbq6U8trDL3tbnH\ni8+8av4zxWdK0o7DZxafeTiaHRDJHRxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQI\nHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSKzKqaqzZozoj3v3FZ/7yD+cUXym\nJC355sziM5/8/D8XnylJ/bdcU2Vuz0t1fvzcqwvrnAL7zrUvFJ+5cfefFZ8pSX2ryu+69+gTja7j\nDg4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k1jhw2122t9r+bs2FAJQzkTv4DZIGay0CoLxGgdteLOmj\nktbXXQdASU3v4LdL+oKkk/7UddtrbA/YHji870iR5QBMTsfAbV8m6cWIeHy86yJiXUT0R0R/z/zZ\nxRYEcOqa3MFXSrrc9q8k3SfpEtsbqm4FoIiOgUfElyJicUScJekKST+KiCurbwZg0vg6OJDYhL4f\nPCJ+LOnHVTYBUBx3cCAxAgcSI3AgMQIHEiNwILEqp6ou7D6gm8/4QfG5axb8e/GZkvT9P1lefObS\nBz5TfKYkzf/Y3ipzjz32tipzZ++tc1rryB/OLT5z7qXPF58pSa/dW+E04L3N0uUODiRG4EBiBA4k\nRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG\n4EBiBA4kVuVU1ZeP9WrD/vcVn/tfq88rPlOS7v6Pfy0+87FzlxWfKUnbttWZe8Yzx6vM/ad/vLPK\n3JuGri0+84VKJ8B2v6P8zGOzm13HHRxIjMCBxAgcSIzAgcQIHEiMwIHEGgVue57tjbZ/YXvQ9gdq\nLwZg8pp+Hfzrkh6KiL+wPUvSnIo7ASikY+C250q6WNJfSVJEHJV0tO5aAEpo8hB9maQ9ku62vdX2\netu9lfcCUECTwLslXSBpbUSskHRI0s2vv8j2GtsDtgcO7eMGD0wFTQIfljQcEZvH3t6o0eB/T0Ss\ni4j+iOjvnT+r5I4ATlHHwCPieUnP2j537F2rJD1VdSsARTR9Fv06SfeMPYO+U9LV9VYCUEqjwCNi\nm6T+yrsAKIxXsgGJETiQGIEDiRE4kBiBA4kROJCYI6L40NPOWBJn/+Xni8898J46L4FduXyo+Myf\n/rLO6ad9/9NTZe7CnxysMveVd9b5toVDZ5a/N824aF/xmZLU3XWs+MwdN96lV3+5u+MxsNzBgcQI\nHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgc\nSIzAgcQIHEis6Q8fnJAFpx/Qpz/zUPG5G+748+IzJenAOeUPMuzdXudwxIPn1zl48tCKKh8K+t7F\nX6sy99pPX1d85ux/qXPoYhw/XnzmzpeaHeTIHRxIjMCBxAgcSIzAgcQIHEiMwIHECBxIrFHgtj9n\ne7vtn9u+13adL/ICKKpj4LYXSbpeUn9EvFtSl6Qrai8GYPKaPkTvlnSa7W5JcyQ9V28lAKV0DDwi\nfi3pVkm7JO2W9EpEPPL662yvsT1ge+A3e+u8nBLAxDR5iD5f0mpJSyWdKanX9pWvvy4i1kVEf0T0\n9/3BrPKbApiwJg/RL5X0dETsiYjXJG2SdFHdtQCU0CTwXZIutD3HtiWtkjRYdy0AJTT5HHyzpI2S\ntkh6cuy/WVd5LwAFNPom4Ii4RdItlXcBUBivZAMSI3AgMQIHEiNwIDECBxKrcpTmDB1XX9fh4nP3\nX3Sk+ExJOvLwsuIz1/3NHcVnStJNX7m2ytyZr3ZVmXvN3ddXmft36zcUn3n7u95bfKYknf/fI8Vn\nbv1Us5ncwYHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCB\nxAgcSIzAgcQIHEiMwIHECBxIjMCBxBwR5YfaeyQ90+DSBZJeKr5APdNp3+m0qzS99p0Ku749Ik7v\ndFGVwJuyPRAR/a0tMEHTad/ptKs0vfadTrvyEB1IjMCBxNoOfF3L//+Jmk77Tqddpem177TZtdXP\nwQHU1fYdHEBFrQVu+0O2d9gesn1zW3t0YnuJ7UdtD9rebvuGtndqwnaX7a22v9v2LuOxPc/2Rtu/\nGPs7/kDbO43H9ufGPg5+bvte2z1t7zSeVgK33SXpTkkflrRc0idtL29jlwZGJN0UEe+SdKGkv53C\nu57oBkmDbS/RwNclPRQR50l6r6bwzrYXSbpeUn9EvFtSl6Qr2t1qfG3dwd8vaSgidkbEUUn3SVrd\n0i7jiojdEbFl7PcHNfoBuKjdrcZne7Gkj0pa3/Yu47E9V9LFkr4hSRFxNCL2t7tVR92STrPdLWmO\npOda3mdcbQW+SNKzJ7w9rCkejSTZPkvSCkmb292ko9slfUHS8bYX6WCZpD2S7h77dGK97d62lzqZ\niPi1pFsl7ZK0W9IrEfFIu1uNr63A/Qbvm9JP59vuk/RtSTdGxIG29zkZ25dJejEiHm97lwa6JV0g\naW1ErJB0SNJUfj5mvkYfaS6VdKakXttXtrvV+NoKfFjSkhPeXqwp/FDH9kyNxn1PRGxqe58OVkq6\n3PavNPqpzyW2N7S70kkNSxqOiP97RLRRo8FPVZdKejoi9kTEa5I2Sbqo5Z3G1VbgP5N0ju2ltmdp\n9ImK+1vaZVy2rdHPEQcj4ra29+kkIr4UEYsj4iyN/r3+KCKm5F0mIp6X9Kztc8fetUrSUy2u1Mku\nSRfanjP2cbFKU/hJQWn0IdKbLiJGbH9W0sMafSbyrojY3sYuDayUdJWkJ21vG3vflyPiwRZ3yuQ6\nSfeM/UO/U9LVLe9zUhGx2fZGSVs0+tWVrZrir2rjlWxAYrySDUiMwIHECBxIjMCBxAgcSIzAgcQI\nHEiMwIHEfgdwPctS4OQ+QAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xb047588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAACn1JREFUeJzt3c+v3XMex/HXa25JlRFUN9pmSmLM\niIwhJx0/EguVYAibWZCQjE03gxKJMBv/gAgLkTR+bAiLshARNfFjMZtylRnqMhGM1o+4UxkVYkq9\nZnHvJGXae77t/X5873l7PhJJ73Ucr5zep++5555+OIkA1PSzoQcAaIfAgcIIHCiMwIHCCBwojMCB\nwggcKIzAgcIIHChsWYs7PfGEqaxbe0SLu27iH39f0ft9/vI3X/V+ny21eAykdo/DJP2etdj6tb7U\n3vzH427nFm9VHZ25PC9tXdv7/bZy8Um/7f0+t370Wu/32VKLx0Bq9zhM0u9Zi63b8pz25LOxgfMU\nHSiMwIHCCBwojMCBwggcKIzAgcI6BW77Ettv237H9m2tRwHox9jAbU9JulfSpZJOl3S17dNbDwOw\neF2u4OslvZPk3SR7JT0m6cq2swD0oUvgqyXt3O/jXfOf+x7bG21P256e3b2vr30AFqFL4Ad6O9z/\nvb81yeYkoySjVSunFr8MwKJ1CXyXpP3fWL5G0kdt5gDoU5fAX5Z0qu2TbR8p6SpJT7adBaAPY/+4\naJJvbV8vaaukKUkPJtnRfBmARev058GTPC3p6cZbAPSMd7IBhRE4UBiBA4UROFAYgQOFNTlVtZVJ\nOhhwkra2NEmPwyRtXX9xtxNguYIDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOF\nEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4VN1KmqrbQ4TbPV6aeTdPKn1G7vJP2e\nDYkrOFAYgQOFEThQGIEDhRE4UBiBA4WNDdz2Wtsv2J6xvcP2ph9jGIDF6/Jz8G8l3ZJku+2fS3rF\n9l+SvNl4G4BFGnsFT/Jxku3zv/5C0oyk1a2HAVi8Q/oe3PY6SWdJ2tZiDIB+dQ7c9jGSHpd0U5I9\nB/j7G21P256e3b2vz40ADlOnwG0fobm4H0nyxIFuk2RzklGS0aqVU31uBHCYuryKbkkPSJpJclf7\nSQD60uUKfr6kayVdaPu1+b9+33gXgB6M/TFZkr9K8o+wBUDPeCcbUBiBA4UROFAYgQOFEThQGIcu\nNtLqsMFWJm1vxQMSW+AKDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEE\nDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4UNlGnqrY6SbPFiaKTtLUlHodhT4DlCg4URuBA\nYQQOFEbgQGEEDhRG4EBhBA4U1jlw21O2X7X9VMtBAPpzKFfwTZJmWg0B0L9OgdteI+kySfe3nQOg\nT12v4HdLulXSdwe7ge2NtqdtT8/u3tfLOACLMzZw25dL+jTJKwvdLsnmJKMko1Urp3obCODwdbmC\nny/pCtvvS3pM0oW2H266CkAvxgae5PYka5Ksk3SVpOeTXNN8GYBF4+fgQGGH9OfBk7wo6cUmSwD0\njis4UBiBA4UROFAYgQOFEThQmJP0fqejM5fnpa1re79ftDNJp5S2MkknwG7Lc9qTzzzudlzBgcII\nHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggc\nKIzAgcIIHCiMwIHCDun/TTa0Vid/tjpNE5N1UmlFXMGBwggcKIzAgcIIHCiMwIHCCBworFPgto+z\nvcX2W7ZnbJ/behiAxev6c/B7JD2T5A+2j5S0ouEmAD0ZG7jtYyVdIOmPkpRkr6S9bWcB6EOXp+in\nSJqV9JDtV23fb/voxrsA9KBL4MsknS3pviRnSfpS0m0/vJHtjbanbU/P7t7X80wAh6NL4Lsk7Uqy\nbf7jLZoL/nuSbE4ySjJatXKqz40ADtPYwJN8Immn7dPmP7VB0ptNVwHoRddX0W+Q9Mj8K+jvSrqu\n3SQAfekUeJLXJI0abwHQM97JBhRG4EBhBA4URuBAYQQOFEbgQGFO0vudHusT8jtv6P1+Of2U00Rb\nmqSvr/UX79T03772uNtxBQcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAw\nAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgsCaHLo7OXJ6Xtq7t/X5bHTjY4rC9Sdo6iX7qh09u\ny3Pak884dBH4KSNwoDACBwojcKAwAgcKI3CgMAIHCusUuO2bbe+w/YbtR20vbz0MwOKNDdz2akk3\nSholOUPSlKSrWg8DsHhdn6Ivk3SU7WWSVkj6qN0kAH0ZG3iSDyXdKekDSR9L+jzJsz+8ne2Ntqdt\nT8/u3tf/UgCHrMtT9OMlXSnpZEknSTra9jU/vF2SzUlGSUarVk71vxTAIevyFP0iSe8lmU3yjaQn\nJJ3XdhaAPnQJ/ANJ59heYduSNkiaaTsLQB+6fA++TdIWSdslvT7/z2xuvAtAD5Z1uVGSOyTd0XgL\ngJ7xTjagMAIHCiNwoDACBwojcKCwTq+iLxWtThRtcULnJG2dRD/1k3DXX/xVp9txBQcKI3CgMAIH\nCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcK\nI3CgMAIHCnOS/u/UnpX0zw43PVHSv3of0M4k7Z2krdJk7V0KW3+RZNW4GzUJvCvb00lGgw04RJO0\nd5K2SpO1d5K28hQdKIzAgcKGDnzzwP/+QzVJeydpqzRZeydm66DfgwNoa+grOICGBgvc9iW237b9\nju3bhtoxju21tl+wPWN7h+1NQ2/qwvaU7VdtPzX0loXYPs72FttvzT/G5w69aSG2b57/OnjD9qO2\nlw+9aSGDBG57StK9ki6VdLqkq22fPsSWDr6VdEuSX0s6R9KflvDW/W2SNDP0iA7ukfRMkl9JOlNL\neLPt1ZJulDRKcoakKUlXDbtqYUNdwddLeifJu0n2SnpM0pUDbVlQko+TbJ//9Rea+wJcPeyqhdle\nI+kySfcPvWUhto+VdIGkByQpyd4k/x521VjLJB1le5mkFZI+GnjPgoYKfLWknft9vEtLPBpJsr1O\n0lmStg27ZKy7Jd0q6buhh4xxiqRZSQ/Nfztxv+2jhx51MEk+lHSnpA8kfSzp8yTPDrtqYUMF7gN8\nbkm/nG/7GEmPS7opyZ6h9xyM7cslfZrklaG3dLBM0tmS7ktylqQvJS3l12OO19wzzZMlnSTpaNvX\nDLtqYUMFvkvS2v0+XqMl/FTH9hGai/uRJE8MvWeM8yVdYft9zX3rc6Hth4eddFC7JO1K8r9nRFs0\nF/xSdZGk95LMJvlG0hOSzht404KGCvxlSafaPtn2kZp7oeLJgbYsyLY19z3iTJK7ht4zTpLbk6xJ\nsk5zj+vzSZbkVSbJJ5J22j5t/lMbJL054KRxPpB0ju0V818XG7SEXxSU5p4i/eiSfGv7eklbNfdK\n5INJdgyxpYPzJV0r6XXbr81/7s9Jnh5wUyU3SHpk/j/070q6buA9B5Vkm+0tkrZr7qcrr2qJv6uN\nd7IBhfFONqAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcK+y+Qlolk5IOqTAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xb0de518>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import os\n",
"import tempfile\n",
"import subprocess\n",
"import tempfile\n",
"import shutil\n",
"\n",
"import numpy as np\n",
"import nibabel as nib\n",
"os.environ[\"FSLOUTPUTTYPE\"] = \"NIFTI_GZ\"\n",
"\n",
"def binarise(data):\n",
" # Remember the directory where we started\n",
" cwd_orig = os.getcwd()\n",
" try:\n",
" # Create a temporary directory\n",
" tempdir = tempfile.mkdtemp(\"fsl\")\n",
" \n",
" # Save input data in temp directory\n",
" os.chdir(tempdir)\n",
" tmpin = nib.Nifti1Image(data, np.identity(4))\n",
" tmpin.to_filename(\"in.nii.gz\")\n",
" \n",
" # Run a command from $FSLDIR\n",
" fslmaths = os.path.join(os.environ[\"FSLDIR\"], \"bin\", \"fslmaths\")\n",
" \n",
" # We could use os.system here if we don't care about returning the stdout/stderr\n",
" p = subprocess.Popen([fslmaths, \"in.nii.gz\", \"-thr\", \"0.5\", \"-bin\", \"out.nii.gz\"], \n",
" stdout=subprocess.PIPE, stderr=subprocess.STDOUT)\n",
" cmd_stdout = \"\"\n",
" while 1:\n",
" retcode = p.poll()\n",
" cmd_stdout += p.stdout.readline()\n",
" if retcode is not None: break\n",
" if retcode != 0:\n",
" raise RuntimeError(\"Error: %s\" % cmd_stdout)\n",
" \n",
" # Load the output file and return it with the command standard output\n",
" out_nii = nib.load(\"out.nii.gz\")\n",
" return out_nii.get_data(), cmd_stdout\n",
" finally:\n",
" # Change back to our starting directory\n",
" os.chdir(cwd_orig)\n",
"\n",
"data = np.random.rand(10, 10, 10, 10)\n",
"plt.imshow(data[:,:,5,5])\n",
"plt.show()\n",
"\n",
"output, stdout = binarise(data)\n",
"plt.imshow(output[:,:,5,5])\n",
"plt.show()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Summary\n",
"\n",
"## What we've done\n",
"\n",
" - It's not that hard to call existing C++ code from Python\n",
" - Need to be a bit careful with Numpy arrays\n",
" - Cython is probably the easiest method\n",
" - Data copying can be minimised by passing data as C arrays (`float *` etc)\n",
" - `ctypes` may be a good alternative if you have binary compatibility issues\n",
" - Can always wrap a command line tool as a way of getting started!\n",
" \n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}