Skip to content
Snippets Groups Projects
python_cpp.ipynb 47.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "![Translation](trans.png)\n",
    "\n",
    "# Calling C++ code from Python\n",
    "\n",
    "## Problem\n",
    "\n",
    " - We have some existing C++ code which operates on array/image data\n",
    " - We want to call it from Python\n",
    " - We want to use Numpy arrays to pass input and receive output\n",
    " - **Ideally, want to avoid too much copying of large data**\n",
    " "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Solution I will present\n",
    "\n",
    " - Build a **Cython** extension\n",
    " "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Alternative solutions I will mention briefly\n",
    "\n",
    " - Create a pure-C API and use `ctypes`\n",
    " - Wrapper-generators (e.g. `swig`)\n",
    " - Wrapping a command line tool\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Sample C++ code\n",
    "    #include \"newimage/newimageall.h\"\n",
    "\n",
    "    void process_volume(NEWIMAGE::volume4D<float> &invol)\n",
    "    {\n",
    "        // Do some clever stuff\n",
    "        invol.binarise(0.5);\n",
    "    }\n",
    "\n",
    "    int main(int argc, char **argv)\n",
    "    {\n",
    "        char *input_file = argv[1];\n",
    "        char *output_file = argv[2];\n",
    "\n",
    "        NEWIMAGE::volume4D<float> invol;\n",
    "        read_volume4D(invol, input_file);\n",
    "\n",
    "        process_volume(invol);\n",
    "        save_volume4D(invol, output_file);\n",
    "    }\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    \n",
    "## First provide an entry point using C++ native types\n",
    "\n",
    "    #include <vector>\n",
    "    #include <iostream>\n",
    "    \n",
    "    std::vector<float> process_vectors(std::vector<float> &input, int nx, int ny, int nz, int nt)\n",
    "    {\n",
    "        // This is just so we can see if the data has been copied\n",
    "        std::cerr << \"In C++ the input vector starts at address \" << &input[0] << std::endl;\n",
    "        \n",
    "        // Here we ought to check that nx, ny, nz, nt is consistent with overall length of input\n",
    "        \n",
    "        // Create a volume4D using an existing data buffer\n",
    "        // when we do this, NEWIMAGE will not try to delete the data buffer\n",
    "        NEWIMAGE::volume4D<float> invol(nx, ny, nz, nt, &input[0]);\n",
    "\n",
    "        // Do our processing step\n",
    "        process_volume(invol);\n",
    "        \n",
    "        // Input data has been modified, so return it directly\n",
    "        return input;\n",
    "    }\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "# Array ordering\n",
    "\n",
    "![Ordering](abc.png)\n",
    "\n",
    "If `input` is a 4D image, it's pretty clear that the first element is the voxel with co-ordinates `(0, 0, 0, 0)`\n",
    "\n",
    "But what is the next element?\n",
    "\n",
    "Is it voxel `(1, 0, 0, 0)`?\n",
    "\n",
    "Or `(0, 0, 0, 1)`?\n",
    "\n",
    "If the *first* axis is the one which varies fastest, we are using **Column-Major** ordering\n",
    "If the *last* axis is the one which varies fastest, we are using **Row-Major** ordering"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## So, which is the standard?\n",
    "\n",
    "| Row-major            | Column-major | \n",
    "| ------------         | ---------    | \n",
    "| C/C++ native arrays  | Fortran      | \n",
    "| Python/Numpy default | Matlab       |\n",
    "| SAS                  | FSL NEWIMAGE | \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "### Here, we will need to make sure our Numpy arrays are passed as 1-dimensional float arrays in Column-major order to match NEWIMAGE\n",
    "\n",
    "    data.flatten(order='F').astype(np.float32)\n",
    "    \n",
    " - `'F'` stands for 'Fortran order'\n",
    " - A C++ `float` is *almost* guaranteed to be 32 bits\n",
    " "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "![Cython](cython.png)\n",
    "\n",
    "# Cython extension\n",
    "\n",
    "## First, the Cython wrapper\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# my_analysis_wrapper.pyx\n",
    "\n",
    "import numpy as np\n",
    "cimport numpy as np\n",
    "\n",
    "from libcpp.vector cimport vector\n",
    "\n",
    "cdef extern from \"my_analysis.h\":\n",
    "    vector[float] process_vector(vector[float] &, int, int, int, int)\n",
    "    \n",
    "def process_using_vectors(data):\n",
    "    # Save the dimensions of the data because we're going to flatten it to 1D array\n",
    "    # Should be checking the dimensions at this point!\n",
    "    nx, ny, nz, nt = data.shape\n",
    "\n",
    "    # Convert data to 1D in Column-major (Fortran) order\n",
    "    # This always copies the data\n",
    "    data = data.flatten(order='F').astype(np.float32)\n",
    "\n",
    "    # This line is just so we can see if the data is being copied\n",
    "    print(\"In python the input data starts at %X\" % data.__array_interface__['data'][0])\n",
    "\n",
    "    # Call the C++ code\n",
    "    output = process_vectors(data, nx, ny, nz, nt)\n",
    "\n",
    "    # Output is a 1D array in Fortran order - turn it back into a multidimensional array\n",
    "    # This should not copy the data\n",
    "    output = np.reshape(output, [nx, ny, nz, nt], order='F')\n",
    "    print(\"In python the reshaped data starts at %X\" % output.__array_interface__['data'][0])\n",
    "    \n",
    "    return output\n",
    "    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "        \n",
    "## Next, build the extension\n",
    "\n",
    "This would normally go in `setup.py`\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "import numpy\n",
    "\n",
    "from setuptools import setup\n",
    "from Cython.Build import cythonize\n",
    "from setuptools.extension import Extension\n",
    "\n",
    "# My Cython extension\n",
    "fsldir = os.environ[\"FSLDIR\"]\n",
    "\n",
    "ext = Extension(\"my_analysis_wrapper\",\n",
    "                 sources=['my_analysis_wrapper.pyx',\n",
    "                          'my_analysis.cpp'],\n",
    "                 language=\"c++\",\n",
    "                 include_dirs=[\".\", numpy.get_include(), \n",
    "                               os.path.join(fsldir, \"include\"), \n",
    "                               os.path.join(fsldir, \"extras/include\"), \n",
    "                               os.path.join(fsldir, \"extras/include/newmat\")], \n",
    "                 libraries=['newimage', 'miscmaths', 'fslio', 'niftiio', 'newmat', 'znz', \"zlib\"],\n",
    "                 library_dirs=[os.path.join(fsldir, \"lib\"), os.path.join(fsldir, \"extras/lib\")])\n",
    "\n",
    "# setup parameters\n",
    "setup(name='my_app',\n",
    "      description='My Python application which calls C++',\n",
    "      ext_modules=cythonize(ext))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "running build_ext\n",
      "copying build\\lib.win-amd64-2.7\\my_analysis_wrapper.pyd -> \n"
     ]
    }
   ],
   "source": [
    "%run setup.py build_ext"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADKRJREFUeJzt3W1sXvV5x/HfL3Yc7DQkTbulysPq\nwChrSFeBPMaDxgR0E5SMrGonkYpqY9WiTQVS2q2ibBKa9mJvECqqKjqPPkhrVMbSjFUdg9LSFqFp\nVpyEKhiXNktYHoGUpCTQ0Djk2gt7UsqI72P8/3PsS9+PhBSbw8UlJ9+c2/d9fG5HhADkNKftBQDU\nQ+BAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJNZdY2jPnN7o7VpQfO6C839RfKYkdelU8Zkv7l9U\nfKYkvTavylh1v1rnisbXelxl7pIlR4rPPPDKwuIzJanr5fLn0RPHDuvk8Vc6fnGrBN7btUCXLv5I\n8blXPrCr+ExJWjDn1eIzN/71muIzJemllV1V5i5+ZqzK3JfePbfK3L/c8M/FZ9659Q+Kz5SkBU/0\nFZ/5kwfubnQcD9GBxAgcSIzAgcQIHEiMwIHECBxIrFHgtq+x/YztnbZvr70UgDI6Bm67S9IXJF0r\naZWkdbZX1V4MwPQ1OYNfLGlnROyKiBOS7pe0tu5aAEpoEvgySXtP+3jfxOd+ie31todtD584dbzU\nfgCmoUngb3S96/+7cDkiBiNiICIGeub0Tn8zANPWJPB9klac9vFySQfqrAOgpCaBb5F0nu2Vtnsk\n3SDpm3XXAlBCx58mi4iTtm+W9IikLklfjoiR6psBmLZGPy4aEQ9JeqjyLgAK40o2IDECBxIjcCAx\nAgcSI3AgsSo3XdTcbsWSdxQf+/TL5W+OKEkjX1xdfObLq+vcTfS3r9tRZe6WB99XZe7Y/Dp3a733\njvI39Tx/68HiMyVpbGn5r8Hunze7EzBncCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgMQIH\nEiNwIDECBxIjcCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgsTp3VZWk7vJ/d7zwh33FZ0rS\ndY/8oPjMB5/9zeIzJenx/7qgytwf3nx3lbm/9Y+fqjJ3/v7jxWf++3/WedPccx+7qfjMX/xNs+M4\ngwOJETiQGIEDiRE4kBiBA4kROJBYx8Btr7D9Pdujtkdsb3grFgMwfU1eBz8p6dMRsc32AklbbT8a\nEU9X3g3ANHU8g0fEwYjYNvHrY5JGJS2rvRiA6ZvS9+C2+yVdKGmoxjIAymocuO23SfqGpE9GxNE3\n+PfrbQ/bHj5x8ucldwTwJjUK3PZcjce9MSI2v9ExETEYEQMRMdDTXeeacQBT0+RZdEv6kqTRiKjz\nEwkAqmhyBr9c0sckXWX7yYl/Plh5LwAFdHyZLCKekOS3YBcAhXElG5AYgQOJETiQGIEDiRE4kFiV\nmy6+urhLO9ctLD73u+sGi8+UpFt3f7j4zL94z+PFZ0rS379Y5xXK9z36iSpz+4fGqsz98Z/OKz7z\nypG1xWdK0rJ/mVt85qEjzV7Y4gwOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\nRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRW5a6qPfPHtPyiA8Xn3nPoiuIzJWnX\nv51bfOaDG6P4TEla+rtVfst01vryv1+StHvdO6vMXflP5d8u76wf1nlf+1NHthWfOedks105gwOJ\nETiQGIEDiRE4kBiBA4kROJAYgQOJNQ7cdpft7ba/VXMhAOVM5Qy+QdJorUUAlNcocNvLJV0n6b66\n6wAoqekZ/HOSPiPp1JkOsL3e9rDt4bGf1bnkD8DUdAzc9hpJL0TE1smOi4jBiBiIiIG5i/qKLQjg\nzWtyBr9c0vW2n5V0v6SrbH+t6lYAiugYeER8NiKWR0S/pBskPRYRN1bfDMC08To4kNiUfrg4Ir4v\n6ftVNgFQHGdwIDECBxIjcCAxAgcSI3AgsSq36Bw72aUDhxcWn3vBoueKz5SkFf+6v/jMf9iyufhM\nSfrgtj+rMvfs639aZe7cO5ZVmfvcnx8rPrP30V8vPlOSeo6Vv8Pua//xRKPjOIMDiRE4kBiBA4kR\nOJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4\nkBiBA4k5ovwdHxfOWxKXveujxec+//sris+UpMO/c6L4zPO+OFZ8piS9uHp+lbmrPj5SZe7zlx6t\nMvfjP95dfObQsXOLz5Sk31tY/mu7Ye1/6yc7jrvTcZzBgcQIHEiMwIHECBxIjMCBxAgcSKxR4LYX\n2d5k+0e2R21fWnsxANPX9N1F75H0cER8xHaPpL6KOwEopGPgts+WdIWkP5GkiDghqfyVIQCKa/IQ\n/RxJhyR9xfZ22/fZrnM5FYCimgTeLekiSfdGxIWSXpF0++sPsr3e9rDt4ROvHS+8JoA3o0ng+yTt\ni4ihiY83aTz4XxIRgxExEBEDPV29JXcE8CZ1DDwinpO01/b5E5+6WtLTVbcCUETTZ9FvkbRx4hn0\nXZJuqrcSgFIaBR4RT0oaqLwLgMK4kg1IjMCBxAgcSIzAgcQIHEiMwIHEmr4OPjX9UgyeKj72Vz9U\n5/qaJd85u/jMXXctKj5Tkvr/7kiVuUP9F1SZu7J7S5W5f7tjTfGZffPq3An34WffW3zmvuODjY7j\nDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIE\nDiRG4EBiBA4kRuBAYlVuuvhr8w7r8+c8UHxu/0hf8ZmS9NWjS4vPvH/9tcVnStLO27uqzP3oBY9X\nmfvwM1dUmfvq3ig+c9sffb74TEn60PuvKT7zwJFmN4jkDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\n1ihw27fZHrH9lO2v2z6r9mIApq9j4LaXSbpV0kBErJbUJemG2osBmL6mD9G7JfXa7pbUJ+lAvZUA\nlNIx8IjYL+kuSXskHZT0UkR8+/XH2V5ve9j28OHD5d8bHMDUNXmI/nZJayWtlLRU0nzbN77+uIgY\njIiBiBhYvJjn7oCZoEmJH5C0OyIORcSYpM2SLqu7FoASmgS+R9IltvtsW9LVkkbrrgWghCbfgw9J\n2iRpm6QdE//NYOW9ABTQ6OfBI+JOSXdW3gVAYTwbBiRG4EBiBA4kRuBAYgQOJOaI8nen7H3Xijjn\njz9VfO7KNbuKz5Skp57sLz6zd/mx4jMl6eJle6rMXfuO7VXmXtl7qMrca/7qtuIzn7+sfAuSdN4t\nQ8VnDsV3dTQOu9NxnMGBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCB\nxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcSq3FXV9iFJ/9Pg0HdK+mnxBeqZTfvOpl2l2bXv\nTNj13RHxK50OqhJ4U7aHI2KgtQWmaDbtO5t2lWbXvrNpVx6iA4kROJBY24EPtvz/n6rZtO9s2lWa\nXfvOml1b/R4cQF1tn8EBVNRa4Lavsf2M7Z22b29rj05sr7D9Pdujtkdsb2h7pyZsd9nebvtbbe8y\nGduLbG+y/aOJr/Glbe80Gdu3Tfw5eMr2122f1fZOk2klcNtdkr4g6VpJqySts72qjV0aOCnp0xHx\nXkmXSPrEDN71dBskjba9RAP3SHo4In5D0vs1g3e2vUzSrZIGImK1pC5JN7S71eTaOoNfLGlnROyK\niBOS7pe0tqVdJhURByNi28Svj2n8D+CydreanO3lkq6TdF/bu0zG9tmSrpD0JUmKiBMR8bN2t+qo\nW1Kv7W5JfZIOtLzPpNoKfJmkvad9vE8zPBpJst0v6UJJ5d/wuazPSfqMpFNtL9LBOZIOSfrKxLcT\n99me3/ZSZxIR+yXdJWmPpIOSXoqIb7e71eTaCvyN3rh8Rj+db/ttkr4h6ZMRcbTtfc7E9hpJL0TE\n1rZ3aaBb0kWS7o2ICyW9ImkmPx/zdo0/0lwpaamk+bZvbHerybUV+D5JK077eLlm8EMd23M1HvfG\niNjc9j4dXC7petvPavxbn6tsf63dlc5on6R9EfF/j4g2aTz4meoDknZHxKGIGJO0WdJlLe80qbYC\n3yLpPNsrbfdo/ImKb7a0y6RsW+PfI45GxN1t79NJRHw2IpZHRL/Gv66PRcSMPMtExHOS9to+f+JT\nV0t6usWVOtkj6RLbfRN/Lq7WDH5SUBp/iPSWi4iTtm+W9IjGn4n8ckSMtLFLA5dL+pikHbafnPjc\nHRHxUIs7ZXKLpI0Tf9HvknRTy/ucUUQM2d4kaZvGX13Zrhl+VRtXsgGJcSUbkBiBA4kROJAYgQOJ\nETiQGIEDiRE4kBiBA4n9L/yuy9QpJgQiAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x8d4a6d8>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In python the input data starts at A55A980\n",
      "In C++ the input vector starts at address 000000000A87D5A0\n",
      "\n",
      "In python the reshaped data starts at A6B2040\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAACnZJREFUeJzt3duvnXMex/HPZ3ar1RpxGDfaZpBg\nphGG7DgmLlSCIdzMBQnJuOnNOEYizI1/QIQLkTQON4SLciEiauJwMTcdWwlqIw2GOkSHjAoZdfjM\nxd6TlNG9nnY/P89+vt6vRNK9PZZPlvX2rLX26lMnEYCafjX0AADtEDhQGIEDhRE4UBiBA4UROFAY\ngQOFEThQGIEDhS1rcaMHeUVWanXvt3vCyV/1fputvPXKqqEnlPZLfyz8R19qT772pOPc4qOqh/qI\nnOENvd/ulg9f7v02W7ng6D8MPaG0X/pjYWue0e58NjFwnqIDhRE4UBiBA4UROFAYgQOFEThQWKfA\nbV9o+03bO2zf0noUgH5MDNz2lKS7JV0kab2kK2yvbz0MwOJ1OYOfLmlHkreT7JH0iKTL2s4C0Icu\nga+R9P5eX++c/94P2N5oe8b2zDf6uq99ABahS+A/9XG4//t8a5JNSaaTTC/XisUvA7BoXQLfKWnd\nXl+vlfRhmzkA+tQl8BckHW/7WNsHSbpc0uNtZwHow8TfLprkW9vXSNoiaUrS/Um2N18GYNE6/X7w\nJE9KerLxFgA945NsQGEEDhRG4EBhBA4URuBAYU2uqjo2Y7pAYquLDY7pPpDGt3conMGBwggcKIzA\ngcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCB\nwggcKIzAgcJGdVXVVlfSbHWl0hbGdh+M6eqnY3ocnH7BV52O4wwOFEbgQGEEDhRG4EBhBA4URuBA\nYRMDt73O9nO2Z21vt339zzEMwOJ1+Tn4t5JuSrLN9q8lvWj7b0leb7wNwCJNPIMn+SjJtvlffyFp\nVtKa1sMALN5+vQa3fYykUyVtbTEGQL86f1TV9iGSHpV0Q5LdP/H3N0raKEkrtaq3gQAOXKczuO3l\nmov7oSSP/dQxSTYlmU4yvVwr+twI4AB1eRfdku6TNJvkjvaTAPSlyxn8HElXSTrP9svzf/2x8S4A\nPZj4GjzJ3yX5Z9gCoGd8kg0ojMCBwggcKIzAgcIIHChsVBddHNNF8VrhPpgzpvuhxYUn38qnnY7j\nDA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEE\nDhRG4EBhBA4URuBAYQQOFOYkvd/o9Ckr848t63q/3VZaXPVybMZ0lVKJ/2Zb84x257OJf2YgZ3Cg\nMAIHCiNwoDACBwojcKAwAgcKI3CgsM6B256y/ZLtJ1oOAtCf/TmDXy9pttUQAP3rFLjttZIulnRv\n2zkA+tT1DH6npJslfb+vA2xvtD1je2bXp9/1Mg7A4kwM3PYlkj5J8uJCxyXZlGQ6yfRRR071NhDA\ngetyBj9H0qW235X0iKTzbD/YdBWAXkwMPMmtSdYmOUbS5ZKeTXJl82UAFo2fgwOFLdufg5M8L+n5\nJksA9I4zOFAYgQOFEThQGIEDhRE4UNh+vYuO7rhKaVst7t+x3QddcAYHCiNwoDACBwojcKAwAgcK\nI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwpr\nclXVt15ZNaorVHKFznZXgR3T/TCmK+GefsFXnY7jDA4URuBAYQQOFEbgQGEEDhRG4EBhnQK3fZjt\nzbbfsD1r+6zWwwAsXtefg98l6akkf7J9kKRVDTcB6MnEwG0fKulcSX+WpCR7JO1pOwtAH7o8RT9O\n0i5JD9h+yfa9tlc33gWgB10CXybpNEn3JDlV0peSbvnxQbY32p6xPfONvu55JoAD0SXwnZJ2Jtk6\n//VmzQX/A0k2JZlOMr1cK/rcCOAATQw8yceS3rd94vy3Nkh6vekqAL3o+i76tZIemn8H/W1JV7eb\nBKAvnQJP8rKk6cZbAPSMT7IBhRE4UBiBA4UROFAYgQOFEThQWJOrqp5w8lfasmU8Vyptcbtju0rp\nmK5+iu44gwOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIED\nhRE4UBiBA4UROFAYgQOFEThQWJOLLrbS6kKGLbS6iOGY7gOJizlKbe6Dt/Jpp+M4gwOFEThQGIED\nhRE4UBiBA4UROFAYgQOFdQrc9o22t9t+zfbDtle2HgZg8SYGbnuNpOskTSc5SdKUpMtbDwOweF2f\noi+TdLDtZZJWSfqw3SQAfZkYeJIPJN0u6T1JH0n6PMnTPz7O9kbbM7Zndn36Xf9LAey3Lk/RD5d0\nmaRjJR0tabXtK398XJJNSaaTTB915FT/SwHsty5P0c+X9E6SXUm+kfSYpLPbzgLQhy6BvyfpTNur\nbFvSBkmzbWcB6EOX1+BbJW2WtE3Sq/P/zKbGuwD0oNPvB09ym6TbGm8B0DM+yQYURuBAYQQOFEbg\nQGEEDhTmJL3f6KE+Imd4Q++3O7YriqKdFlcqbfX4arF1a57R7nzmScdxBgcKI3CgMAIHCiNwoDAC\nBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIH\nCmtyVVXbuyT9s8Ohv5H0r94HtDOmvWPaKo1r71LY+tskR006qEngXdmeSTI92ID9NKa9Y9oqjWvv\nmLbyFB0ojMCBwoYOfNPA//79Naa9Y9oqjWvvaLYO+hocQFtDn8EBNDRY4LYvtP2m7R22bxlqxyS2\n19l+zvas7e22rx96Uxe2p2y/ZPuJobcsxPZhtjfbfmP+Pj5r6E0LsX3j/OPgNdsP21459KaFDBK4\n7SlJd0u6SNJ6SVfYXj/Elg6+lXRTkt9LOlPSX5bw1r1dL2l26BEd3CXpqSS/k3SKlvBm22skXSdp\nOslJkqYkXT7sqoUNdQY/XdKOJG8n2SPpEUmXDbRlQUk+SrJt/tdfaO4BuGbYVQuzvVbSxZLuHXrL\nQmwfKulcSfdJUpI9Sf497KqJlkk62PYySaskfTjwngUNFfgaSe/v9fVOLfFoJMn2MZJOlbR12CUT\n3SnpZknfDz1kguMk7ZL0wPzLiXttrx561L4k+UDS7ZLek/SRpM+TPD3sqoUNFfhP/cHlS/rtfNuH\nSHpU0g1Jdg+9Z19sXyLpkyQvDr2lg2WSTpN0T5JTJX0paSm/H3O45p5pHivpaEmrbV857KqFDRX4\nTknr9vp6rZbwUx3byzUX90NJHht6zwTnSLrU9ruae+lznu0Hh520Tzsl7Uzyv2dEmzUX/FJ1vqR3\nkuxK8o2kxySdPfCmBQ0V+AuSjrd9rO2DNPdGxeMDbVmQbWvuNeJskjuG3jNJkluTrE1yjObu12eT\nLMmzTJKPJb1v+8T5b22Q9PqAkyZ5T9KZtlfNPy42aAm/KSjNPUX62SX51vY1krZo7p3I+5NsH2JL\nB+dIukrSq7Zfnv/eX5M8OeCmSq6V9ND8/+jflnT1wHv2KclW25slbdPcT1de0hL/VBufZAMK45Ns\nQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhT2X771bWTJmQ2jAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x9ab35f8>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import numpy\n",
    "import my_analysis_wrapper\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "data = numpy.random.rand(10, 10, 10, 10)\n",
    "\n",
    "plt.imshow(data[:,:,5,5])\n",
    "plt.show()\n",
    "\n",
    "output = my_analysis_wrapper.process_with_vectors(data)\n",
    "plt.imshow(output[:,:,5,5])\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Great, it worked\n",
    "\n",
    "## But we did copy our data  - several times\n",
    "\n",
    " - We copied the input once in Python to flatten it in the right order\n",
    " - Cython copied it again, because the pointer to the memory in the `vector` is different from the pointer to the data in the Numpy array.\n",
    " - Similarly, converting the output `vector` back to a Numpy array would involve a copy\n",
    " \n",
    "\n",
    "## Do we care?\n",
    "\n",
    "It depends on:\n",
    "\n",
    " - Is the processing time per-voxel much greater than the data copying time?\n",
    "   - If so, copying will not add significant overhead\n",
    " - Might the data be comparable in size to system memory?\n",
    "   - If so, copying may result in swapping and significant slowness\n",
    "   \n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Solution with less copying\n",
    "\n",
    "We can't use a `vector`, it needs to be free to manage its own memory, not use an existing fixed buffer.\n",
    "\n",
    "Instead pass a pure C array:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "    void process_array(float *input, int nx, int ny, int nz, int nt)\n",
    "    {\n",
    "        cerr << \"In C++ the input array starts at address \" << input << std::endl;\n",
    "\n",
    "        NEWIMAGE::volume4D<float> invol(nx, ny, nz, nt, input);\n",
    "\n",
    "        process_volume(invol);\n",
    "        \n",
    "        // Volume data buffer is modified directly, so provided it was not copied\n",
    "        // we should be able to see the output directly in Python   \n",
    "    }\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    " - Note that we cannot check the size of the `input` buffer! It had better be correct"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# my_analysis_wrapper.pyx\n",
    "\n",
    "import numpy as np\n",
    "cimport numpy as np\n",
    "\n",
    "from libcpp.vector cimport vector\n",
    "\n",
    "cdef extern from \"my_analysis.h\":\n",
    "    void process_array(float *, int, int, int, int)\n",
    "\n",
    "def process_c(np.ndarray[np.float32_t, ndim=1] input,\n",
    "              nx, ny, nz, nt):\n",
    "    process_array(&input[0], nx, ny, nz, nt)\n",
    "\n",
    "def process_with_arrays(data):\n",
    "    # Save the dimension of the data because we're going to flatten it to 1D array\n",
    "    nx, ny, nz, nt = data.shape\n",
    "\n",
    "    # Convert data to 1D in Column-major (Fortran) order\n",
    "    data = data.flatten(order='F').astype(np.float32)\n",
    "\n",
    "    print(\"In python the data starts at %X\" % data.__array_interface__['data'][0])\n",
    "\n",
    "    process_c(data, nx, ny, nz, nt)\n",
    "\n",
    "    data = np.reshape(data, [nx, ny, nz, nt], order='F')\n",
    "    print(\"In python the reshaped data starts at %X\" % data.__array_interface__['data'][0])\n",
    "    \n",
    "    return data\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADKRJREFUeJzt3W1sXvV5x/HfL3Yc7DQkTbulysPq\nwChrSFeBPMaDxgR0E5SMrGonkYpqY9WiTQVS2q2ibBKa9mJvECqqKjqPPkhrVMbSjFUdg9LSFqFp\nVpyEKhiXNktYHoGUpCTQ0Djk2gt7UsqI72P8/3PsS9+PhBSbw8UlJ9+c2/d9fG5HhADkNKftBQDU\nQ+BAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJNZdY2jPnN7o7VpQfO6C839RfKYkdelU8Zkv7l9U\nfKYkvTavylh1v1rnisbXelxl7pIlR4rPPPDKwuIzJanr5fLn0RPHDuvk8Vc6fnGrBN7btUCXLv5I\n8blXPrCr+ExJWjDn1eIzN/71muIzJemllV1V5i5+ZqzK3JfePbfK3L/c8M/FZ9659Q+Kz5SkBU/0\nFZ/5kwfubnQcD9GBxAgcSIzAgcQIHEiMwIHECBxIrFHgtq+x/YztnbZvr70UgDI6Bm67S9IXJF0r\naZWkdbZX1V4MwPQ1OYNfLGlnROyKiBOS7pe0tu5aAEpoEvgySXtP+3jfxOd+ie31todtD584dbzU\nfgCmoUngb3S96/+7cDkiBiNiICIGeub0Tn8zANPWJPB9klac9vFySQfqrAOgpCaBb5F0nu2Vtnsk\n3SDpm3XXAlBCx58mi4iTtm+W9IikLklfjoiR6psBmLZGPy4aEQ9JeqjyLgAK40o2IDECBxIjcCAx\nAgcSI3AgsSo3XdTcbsWSdxQf+/TL5W+OKEkjX1xdfObLq+vcTfS3r9tRZe6WB99XZe7Y/Dp3a733\njvI39Tx/68HiMyVpbGn5r8Hunze7EzBncCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgMQIH\nEiNwIDECBxIjcCAxAgcSI3AgMQIHEiNwIDECBxIjcCAxAgcSI3AgsTp3VZWk7vJ/d7zwh33FZ0rS\ndY/8oPjMB5/9zeIzJenx/7qgytwf3nx3lbm/9Y+fqjJ3/v7jxWf++3/WedPccx+7qfjMX/xNs+M4\ngwOJETiQGIEDiRE4kBiBA4kROJBYx8Btr7D9Pdujtkdsb3grFgMwfU1eBz8p6dMRsc32AklbbT8a\nEU9X3g3ANHU8g0fEwYjYNvHrY5JGJS2rvRiA6ZvS9+C2+yVdKGmoxjIAymocuO23SfqGpE9GxNE3\n+PfrbQ/bHj5x8ucldwTwJjUK3PZcjce9MSI2v9ExETEYEQMRMdDTXeeacQBT0+RZdEv6kqTRiKjz\nEwkAqmhyBr9c0sckXWX7yYl/Plh5LwAFdHyZLCKekOS3YBcAhXElG5AYgQOJETiQGIEDiRE4kFiV\nmy6+urhLO9ctLD73u+sGi8+UpFt3f7j4zL94z+PFZ0rS379Y5xXK9z36iSpz+4fGqsz98Z/OKz7z\nypG1xWdK0rJ/mVt85qEjzV7Y4gwOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\nRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRW5a6qPfPHtPyiA8Xn3nPoiuIzJWnX\nv51bfOaDG6P4TEla+rtVfst01vryv1+StHvdO6vMXflP5d8u76wf1nlf+1NHthWfOedks105gwOJ\nETiQGIEDiRE4kBiBA4kROJAYgQOJNQ7cdpft7ba/VXMhAOVM5Qy+QdJorUUAlNcocNvLJV0n6b66\n6wAoqekZ/HOSPiPp1JkOsL3e9rDt4bGf1bnkD8DUdAzc9hpJL0TE1smOi4jBiBiIiIG5i/qKLQjg\nzWtyBr9c0vW2n5V0v6SrbH+t6lYAiugYeER8NiKWR0S/pBskPRYRN1bfDMC08To4kNiUfrg4Ir4v\n6ftVNgFQHGdwIDECBxIjcCAxAgcSI3AgsSq36Bw72aUDhxcWn3vBoueKz5SkFf+6v/jMf9iyufhM\nSfrgtj+rMvfs639aZe7cO5ZVmfvcnx8rPrP30V8vPlOSeo6Vv8Pua//xRKPjOIMDiRE4kBiBA4kR\nOJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4\nkBiBA4k5ovwdHxfOWxKXveujxec+//sris+UpMO/c6L4zPO+OFZ8piS9uHp+lbmrPj5SZe7zlx6t\nMvfjP95dfObQsXOLz5Sk31tY/mu7Ye1/6yc7jrvTcZzBgcQIHEiMwIHECBxIjMCBxAgcSKxR4LYX\n2d5k+0e2R21fWnsxANPX9N1F75H0cER8xHaPpL6KOwEopGPgts+WdIWkP5GkiDghqfyVIQCKa/IQ\n/RxJhyR9xfZ22/fZrnM5FYCimgTeLekiSfdGxIWSXpF0++sPsr3e9rDt4ROvHS+8JoA3o0ng+yTt\ni4ihiY83aTz4XxIRgxExEBEDPV29JXcE8CZ1DDwinpO01/b5E5+6WtLTVbcCUETTZ9FvkbRx4hn0\nXZJuqrcSgFIaBR4RT0oaqLwLgMK4kg1IjMCBxAgcSIzAgcQIHEiMwIHEmr4OPjX9UgyeKj72Vz9U\n5/qaJd85u/jMXXctKj5Tkvr/7kiVuUP9F1SZu7J7S5W5f7tjTfGZffPq3An34WffW3zmvuODjY7j\nDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIE\nDiRG4EBiBA4kRuBAYlVuuvhr8w7r8+c8UHxu/0hf8ZmS9NWjS4vPvH/9tcVnStLO27uqzP3oBY9X\nmfvwM1dUmfvq3ig+c9sffb74TEn60PuvKT7zwJFmN4jkDA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k\n1ihw27fZHrH9lO2v2z6r9mIApq9j4LaXSbpV0kBErJbUJemG2osBmL6mD9G7JfXa7pbUJ+lAvZUA\nlNIx8IjYL+kuSXskHZT0UkR8+/XH2V5ve9j28OHD5d8bHMDUNXmI/nZJayWtlLRU0nzbN77+uIgY\njIiBiBhYvJjn7oCZoEmJH5C0OyIORcSYpM2SLqu7FoASmgS+R9IltvtsW9LVkkbrrgWghCbfgw9J\n2iRpm6QdE//NYOW9ABTQ6OfBI+JOSXdW3gVAYTwbBiRG4EBiBA4kRuBAYgQOJOaI8nen7H3Xijjn\njz9VfO7KNbuKz5Skp57sLz6zd/mx4jMl6eJle6rMXfuO7VXmXtl7qMrca/7qtuIzn7+sfAuSdN4t\nQ8VnDsV3dTQOu9NxnMGBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCB\nxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcSq3FXV9iFJ/9Pg0HdK+mnxBeqZTfvOpl2l2bXv\nTNj13RHxK50OqhJ4U7aHI2KgtQWmaDbtO5t2lWbXvrNpVx6iA4kROJBY24EPtvz/n6rZtO9s2lWa\nXfvOml1b/R4cQF1tn8EBVNRa4Lavsf2M7Z22b29rj05sr7D9Pdujtkdsb2h7pyZsd9nebvtbbe8y\nGduLbG+y/aOJr/Glbe80Gdu3Tfw5eMr2122f1fZOk2klcNtdkr4g6VpJqySts72qjV0aOCnp0xHx\nXkmXSPrEDN71dBskjba9RAP3SHo4In5D0vs1g3e2vUzSrZIGImK1pC5JN7S71eTaOoNfLGlnROyK\niBOS7pe0tqVdJhURByNi28Svj2n8D+CydreanO3lkq6TdF/bu0zG9tmSrpD0JUmKiBMR8bN2t+qo\nW1Kv7W5JfZIOtLzPpNoKfJmkvad9vE8zPBpJst0v6UJJ5d/wuazPSfqMpFNtL9LBOZIOSfrKxLcT\n99me3/ZSZxIR+yXdJWmPpIOSXoqIb7e71eTaCvyN3rh8Rj+db/ttkr4h6ZMRcbTtfc7E9hpJL0TE\n1rZ3aaBb0kWS7o2ICyW9ImkmPx/zdo0/0lwpaamk+bZvbHerybUV+D5JK077eLlm8EMd23M1HvfG\niNjc9j4dXC7petvPavxbn6tsf63dlc5on6R9EfF/j4g2aTz4meoDknZHxKGIGJO0WdJlLe80qbYC\n3yLpPNsrbfdo/ImKb7a0y6RsW+PfI45GxN1t79NJRHw2IpZHRL/Gv66PRcSMPMtExHOS9to+f+JT\nV0t6usWVOtkj6RLbfRN/Lq7WDH5SUBp/iPSWi4iTtm+W9IjGn4n8ckSMtLFLA5dL+pikHbafnPjc\nHRHxUIs7ZXKLpI0Tf9HvknRTy/ucUUQM2d4kaZvGX13Zrhl+VRtXsgGJcSUbkBiBA4kROJAYgQOJ\nETiQGIEDiRE4kBiBA4n9L/yuy9QpJgQiAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xa4908d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In python the data starts at A870040\n",
      "In C++ the input array starts at address 000000000A870040\n",
      "\n",
      "In python the reshaped data starts at A870040\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAACnZJREFUeJzt3duvnXMex/HPZ3ar1RpxGDfaZpBg\nphGG7DgmLlSCIdzMBQnJuOnNOEYizI1/QIQLkTQON4SLciEiauJwMTcdWwlqIw2GOkSHjAoZdfjM\nxd6TlNG9nnY/P89+vt6vRNK9PZZPlvX2rLX26lMnEYCafjX0AADtEDhQGIEDhRE4UBiBA4UROFAY\ngQOFEThQGIEDhS1rcaMHeUVWanXvt3vCyV/1fputvPXKqqEnlPZLfyz8R19qT772pOPc4qOqh/qI\nnOENvd/ulg9f7v02W7ng6D8MPaG0X/pjYWue0e58NjFwnqIDhRE4UBiBA4UROFAYgQOFEThQWKfA\nbV9o+03bO2zf0noUgH5MDNz2lKS7JV0kab2kK2yvbz0MwOJ1OYOfLmlHkreT7JH0iKTL2s4C0Icu\nga+R9P5eX++c/94P2N5oe8b2zDf6uq99ABahS+A/9XG4//t8a5JNSaaTTC/XisUvA7BoXQLfKWnd\nXl+vlfRhmzkA+tQl8BckHW/7WNsHSbpc0uNtZwHow8TfLprkW9vXSNoiaUrS/Um2N18GYNE6/X7w\nJE9KerLxFgA945NsQGEEDhRG4EBhBA4URuBAYU2uqjo2Y7pAYquLDY7pPpDGt3conMGBwggcKIzA\ngcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCB\nwggcKIzAgcJGdVXVVlfSbHWl0hbGdh+M6eqnY3ocnH7BV52O4wwOFEbgQGEEDhRG4EBhBA4URuBA\nYRMDt73O9nO2Z21vt339zzEMwOJ1+Tn4t5JuSrLN9q8lvWj7b0leb7wNwCJNPIMn+SjJtvlffyFp\nVtKa1sMALN5+vQa3fYykUyVtbTEGQL86f1TV9iGSHpV0Q5LdP/H3N0raKEkrtaq3gQAOXKczuO3l\nmov7oSSP/dQxSTYlmU4yvVwr+twI4AB1eRfdku6TNJvkjvaTAPSlyxn8HElXSTrP9svzf/2x8S4A\nPZj4GjzJ3yX5Z9gCoGd8kg0ojMCBwggcKIzAgcIIHChsVBddHNNF8VrhPpgzpvuhxYUn38qnnY7j\nDA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEE\nDhRG4EBhBA4URuBAYQQOFOYkvd/o9Ckr848t63q/3VZaXPVybMZ0lVKJ/2Zb84x257OJf2YgZ3Cg\nMAIHCiNwoDACBwojcKAwAgcKI3CgsM6B256y/ZLtJ1oOAtCf/TmDXy9pttUQAP3rFLjttZIulnRv\n2zkA+tT1DH6npJslfb+vA2xvtD1je2bXp9/1Mg7A4kwM3PYlkj5J8uJCxyXZlGQ6yfRRR071NhDA\ngetyBj9H0qW235X0iKTzbD/YdBWAXkwMPMmtSdYmOUbS5ZKeTXJl82UAFo2fgwOFLdufg5M8L+n5\nJksA9I4zOFAYgQOFEThQGIEDhRE4UNh+vYuO7rhKaVst7t+x3QddcAYHCiNwoDACBwojcKAwAgcK\nI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwpr\nclXVt15ZNaorVHKFznZXgR3T/TCmK+GefsFXnY7jDA4URuBAYQQOFEbgQGEEDhRG4EBhnQK3fZjt\nzbbfsD1r+6zWwwAsXtefg98l6akkf7J9kKRVDTcB6MnEwG0fKulcSX+WpCR7JO1pOwtAH7o8RT9O\n0i5JD9h+yfa9tlc33gWgB10CXybpNEn3JDlV0peSbvnxQbY32p6xPfONvu55JoAD0SXwnZJ2Jtk6\n//VmzQX/A0k2JZlOMr1cK/rcCOAATQw8yceS3rd94vy3Nkh6vekqAL3o+i76tZIemn8H/W1JV7eb\nBKAvnQJP8rKk6cZbAPSMT7IBhRE4UBiBA4UROFAYgQOFEThQWJOrqp5w8lfasmU8Vyptcbtju0rp\nmK5+iu44gwOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIED\nhRE4UBiBA4UROFAYgQOFEThQWJOLLrbS6kKGLbS6iOGY7gOJizlKbe6Dt/Jpp+M4gwOFEThQGIED\nhRE4UBiBA4UROFAYgQOFdQrc9o22t9t+zfbDtle2HgZg8SYGbnuNpOskTSc5SdKUpMtbDwOweF2f\noi+TdLDtZZJWSfqw3SQAfZkYeJIPJN0u6T1JH0n6PMnTPz7O9kbbM7Zndn36Xf9LAey3Lk/RD5d0\nmaRjJR0tabXtK398XJJNSaaTTB915FT/SwHsty5P0c+X9E6SXUm+kfSYpLPbzgLQhy6BvyfpTNur\nbFvSBkmzbWcB6EOX1+BbJW2WtE3Sq/P/zKbGuwD0oNPvB09ym6TbGm8B0DM+yQYURuBAYQQOFEbg\nQGEEDhTmJL3f6KE+Imd4Q++3O7YriqKdFlcqbfX4arF1a57R7nzmScdxBgcKI3CgMAIHCiNwoDAC\nBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIH\nCmtyVVXbuyT9s8Ohv5H0r94HtDOmvWPaKo1r71LY+tskR006qEngXdmeSTI92ID9NKa9Y9oqjWvv\nmLbyFB0ojMCBwoYOfNPA//79Naa9Y9oqjWvvaLYO+hocQFtDn8EBNDRY4LYvtP2m7R22bxlqxyS2\n19l+zvas7e22rx96Uxe2p2y/ZPuJobcsxPZhtjfbfmP+Pj5r6E0LsX3j/OPgNdsP21459KaFDBK4\n7SlJd0u6SNJ6SVfYXj/Elg6+lXRTkt9LOlPSX5bw1r1dL2l26BEd3CXpqSS/k3SKlvBm22skXSdp\nOslJkqYkXT7sqoUNdQY/XdKOJG8n2SPpEUmXDbRlQUk+SrJt/tdfaO4BuGbYVQuzvVbSxZLuHXrL\nQmwfKulcSfdJUpI9Sf497KqJlkk62PYySaskfTjwngUNFfgaSe/v9fVOLfFoJMn2MZJOlbR12CUT\n3SnpZknfDz1kguMk7ZL0wPzLiXttrx561L4k+UDS7ZLek/SRpM+TPD3sqoUNFfhP/cHlS/rtfNuH\nSHpU0g1Jdg+9Z19sXyLpkyQvDr2lg2WSTpN0T5JTJX0paSm/H3O45p5pHivpaEmrbV857KqFDRX4\nTknr9vp6rZbwUx3byzUX90NJHht6zwTnSLrU9ruae+lznu0Hh520Tzsl7Uzyv2dEmzUX/FJ1vqR3\nkuxK8o2kxySdPfCmBQ0V+AuSjrd9rO2DNPdGxeMDbVmQbWvuNeJskjuG3jNJkluTrE1yjObu12eT\nLMmzTJKPJb1v+8T5b22Q9PqAkyZ5T9KZtlfNPy42aAm/KSjNPUX62SX51vY1krZo7p3I+5NsH2JL\nB+dIukrSq7Zfnv/eX5M8OeCmSq6V9ND8/+jflnT1wHv2KclW25slbdPcT1de0hL/VBufZAMK45Ns\nQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEEDhT2X771bWTJmQ2jAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xaa4b128>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import numpy\n",
    "import my_analysis_wrapper\n",
    "\n",
    "plt.imshow(data[:,:,5,5])\n",
    "plt.show()\n",
    "\n",
    "output = my_analysis_wrapper.process_with_arrays(data)\n",
    "plt.imshow(output[:,:,5,5])\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    " - We copied our input data once when we flattened it into Fortran order\n",
    " - C++ code operated directly on that buffer\n",
    " - Output data was not copied when reshaped "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Summary\n",
    "\n",
    " - Easy-ish recipe for passing Numpy arrays to C++ either as a `std::vector` or as a `float *` array.\n",
    " - Can construct `NEWIMAGE::volume<float>` or other complex containers from within C++\n",
    " - Easy modification to instead use `double` array\n",
    " - Can pass Python strings to `C++ std::string` and other C++ containers in a similar way\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Alternatives (Briefly!)\n",
    "\n",
    "## Why?\n",
    "\n",
    "![Compatibility](cython_compat1.png)\n",
    "\n",
    "## Can we assume that our newly compiled Cython/C++ code will link correctly with `libnewimage.a`?\n",
    "\n",
    " - Often, yes, but in general, no\n",
    " - It depends on the compiler used for each - ideally they need to match\n",
    " - The compiler of your Cython extension is **fixed** by the version of Python you are using\n",
    " - Might need to recompile your dependency libraries with this compiler\n",
    " - If you can't do this (e.g. commercial binary) you may be **stuck**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Three common problem scenarios\n",
    "\n",
    " - On Mac, need to use the same C++ standard library (either `libc++` or `libstdc++`)\n",
    " - On Python 2, C++ compiler will be very old (may not support all of C++11)\n",
    " - On Windows, no two versions of VC++ are binary compatible\n",
    " "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Alternative approach where this is a problem\n",
    "\n",
    " - Make your code a shared library with a *Pure C* API\n",
    " - Use `ctypes`\n",
    " \n",
    "## `ctypes`\n",
    "\n",
    " - Part of Python standard library\n",
    " - Allows you to call library functions from 'C' shared library (not C++)\n",
    " - **Pure 'C' libraries are (generally) binary compatible on a given platform**\n",
    " - We have to load the library manually\n",
    " - We have to tell Python about the input and return types\n",
    " "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Pure 'C' API for our processing function\n",
    "\n",
    "    // my_analysis_purec.h\n",
    "\n",
    "    #ifdef __cplusplus\n",
    "    extern \"C\" {\n",
    "    #endif\n",
    "    \n",
    "    void process_array(float *input, int nx, int ny, int nz, int nt);\n",
    "    \n",
    "    #ifdef __cplusplus\n",
    "    }\n",
    "    #endif\n",
    "    \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    " - Note need to use `extern \"C\" { }` if we may want to include this header from C++\n",
    " - **On Windows, additional code is required to make the shared library (DLL) link correctly!**\n",
    " - Note that the implementation *can* use C++"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import ctypes import CDLL, c_int, c_char_p\n",
    "import numpy as np\n",
    "import numpy.ctypeslib\n",
    "\n",
    "def process_ctypes(data):\n",
    "    \n",
    "    clib = ctypes.cdll.LoadLibrary(\"libmy_analysis.so\")\n",
    "\n",
    "    # This is the data type of a 1-D Numpy array\n",
    "    c_float_arr = numpy.ctypeslib.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS')\n",
    "\n",
    "    # This specifies the argument types for the 'process_array' function\n",
    "    # This is not actually required but enables ctypes to do some error checking\n",
    "    clib.process_array.argtypes = [c_float_arr, c_int, c_int, c_int, c_int]\n",
    "\n",
    "    # Put the Numpy data into row-major order and make sure it is contiguous in memory\n",
    "    item = np.ascontiguousarray(item.flatten(order='F'), dtype=np.float32)\n",
    "    \n",
    "    clib.process_carray(data, shape[0], shape[1], shape[2], shape[3])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Comparison with Cython\n",
    "\n",
    "## Cython advantages\n",
    "\n",
    " - Python wrapper is probably a little quicker and cleaner to write\n",
    " - Don't need to produce a new pure-C API provided we have an entry point using C++ types\n",
    " - Potential for better error-checking\n",
    " - Might integrate well if you are already using Cython\n",
    " - No need to build a shared library\n",
    " \n",
    "## `ctypes` advantages\n",
    "\n",
    " - Part of the Python standard library\n",
    " - No additional compile step in `setup.py`\n",
    " - Binary compatibility - no need to be tied to a single (perhaps old) C++ compiler\n",
    " \n",
    "## Conclusion?\n",
    "\n",
    " - Use Cython when you can, `ctypes` if you have to\n",
    " "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Other alternatives (briefly for completeness)\n",
    "\n",
    "## Wrapper Generators (SWIG, shiboken, others)\n",
    "\n",
    " - Run a preprocessor on your C++ code to generate an 'automatic' Python wrapper\n",
    " - Generally need to write an 'interface specifier' for each C++ header to describe how it interfaces to Python\n",
    " - Great when you have a large, complex C++ API which needs to be consistently exposed to Python (e.g. wx/wxpython, QT/PyQT)\n",
    " - SWIG can support other languages as well as Python\n",
    " - Probably more work than Cython/ctypes if you have a single simple API\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Just Wrap the Command Line\n",
    "\n",
    " - Quick and dirty\n",
    " - Copies all data to/from filesystem\n",
    " - Need to go via command line API, create temp directories, etc\n",
    " - Don't overlook as a way of getting started - can move to other solution later\n",
    " \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADJxJREFUeJzt3V+s1/V9x/HXi3OAI+eUwopzCKxC\ntVps12BPOiuJWcVk/WOlSXdhV01nlpLp6p/WrLVNGrdkF72wziY6EkI16XC6hnJhq1X7x27r6kiP\nwLR4SnqGFU9FRQGhWMAD716cs4Q6Ob/v4Xw+fs955/lISDiHr2/fIefJ93d+53c+xxEhADnNaHsB\nAPUQOJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJddcY2jOvJ/oW9hWfO7/7UPGZkjT84oLiM6Pv\nePGZkjRjRp253UNHqsyde/6xKnMP7phdfOay5fuLz5Sk/32ifAuHdUhH44g7XVcl8L6FfVr9zcuK\nz/3E2waKz5SkL97x18Vn/vZP6/xj1Nd7uMrc0z8+VGXupd+qE82jH1xWfOa3vved4jMl6ROLLyw+\nc3P8sNF1PEQHEiNwIDECBxIjcCAxAgcSI3AgsUaB2/6Q7R22h2zfXHspAGV0DNx2l6Q7JX1Y0nJJ\nn7S9vPZiACavyR38/ZKGImJnRByVdJ+k1XXXAlBCk8AXSXr2hLeHx973e2yvsT1ge+Dw/jqvtgIw\nMU0Cf6PXu/6/o1gjYl1E9EdEf8+8nslvBmDSmgQ+LGnJCW8vlvRcnXUAlNQk8J9JOsf2UtuzJF0h\n6f66awEooeN3k0XEiO3PSnpYUpekuyJie/XNAExao28XjYgHJT1YeRcAhfFKNiAxAgcSI3AgMQIH\nEiNwIDHX+Png576nJ9be//bic796Xn/xmZJ09k87Hk45YT984H3FZ0rS0bl1TlX9o8fq/Jz4tz7x\ncpW5g1+cV3zmoge6is+UpNtuvaP4zKs/tluDT3Q+VZU7OJAYgQOJETiQGIEDiRE4kBiBA4kROJAY\ngQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQGIEDiRE4kBiBA4kROJAYgQOJETiQWKOfTTZR+471\natO+8qeKzji7/EmtkjR0zeziMz+4dkvxmZL0zOXlTxOVpKf+fknni07BW7ceqzJ36X3lZ8758q7y\nQyXtOfaW4jNH4oVG13EHBxIjcCAxAgcSI3AgMQIHEiNwILGOgdteYvtR24O2t9u+4c1YDMDkNfk6\n+IikmyJii+23SHrc9vcj4qnKuwGYpI538IjYHRFbxn5/UNKgpEW1FwMweRP6HNz2WZJWSNpcYxkA\nZTUO3HafpG9LujEiDrzBn6+xPWB74Lf7DpfcEcApahS47ZkajfueiNj0RtdExLqI6I+I/tPm95Tc\nEcApavIsuiV9Q9JgRNxWfyUApTS5g6+UdJWkS2xvG/v1kcp7ASig45fJIuInkvwm7AKgMF7JBiRG\n4EBiBA4kRuBAYgQOJFbl0MUjx7u18zcLyg8eqXOAXw3/+W8XVJk78+NRZ+7LVcbq6U8trDL3tbnH\ni8+8av4zxWdK0o7DZxafeTiaHRDJHRxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQI\nHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSKzKqaqzZozoj3v3FZ/7yD+cUXym\nJC355sziM5/8/D8XnylJ/bdcU2Vuz0t1fvzcqwvrnAL7zrUvFJ+5cfefFZ8pSX2ryu+69+gTja7j\nDg4kRuBAYgQOJEbgQGIEDiRG4EBiBA4k1jhw2122t9r+bs2FAJQzkTv4DZIGay0CoLxGgdteLOmj\nktbXXQdASU3v4LdL+oKkk/7UddtrbA/YHji870iR5QBMTsfAbV8m6cWIeHy86yJiXUT0R0R/z/zZ\nxRYEcOqa3MFXSrrc9q8k3SfpEtsbqm4FoIiOgUfElyJicUScJekKST+KiCurbwZg0vg6OJDYhL4f\nPCJ+LOnHVTYBUBx3cCAxAgcSI3AgMQIHEiNwILEqp6ou7D6gm8/4QfG5axb8e/GZkvT9P1lefObS\nBz5TfKYkzf/Y3ipzjz32tipzZ++tc1rryB/OLT5z7qXPF58pSa/dW+E04L3N0uUODiRG4EBiBA4k\nRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG4EBiBA4kRuBAYgQOJEbgQGIEDiRG\n4EBiBA4kVuVU1ZeP9WrD/vcVn/tfq88rPlOS7v6Pfy0+87FzlxWfKUnbttWZe8Yzx6vM/ad/vLPK\n3JuGri0+84VKJ8B2v6P8zGOzm13HHRxIjMCBxAgcSIzAgcQIHEiMwIHEGgVue57tjbZ/YXvQ9gdq\nLwZg8pp+Hfzrkh6KiL+wPUvSnIo7ASikY+C250q6WNJfSVJEHJV0tO5aAEpo8hB9maQ9ku62vdX2\netu9lfcCUECTwLslXSBpbUSskHRI0s2vv8j2GtsDtgcO7eMGD0wFTQIfljQcEZvH3t6o0eB/T0Ss\ni4j+iOjvnT+r5I4ATlHHwCPieUnP2j537F2rJD1VdSsARTR9Fv06SfeMPYO+U9LV9VYCUEqjwCNi\nm6T+yrsAKIxXsgGJETiQGIEDiRE4kBiBA4kROJCYI6L40NPOWBJn/+Xni8898J46L4FduXyo+Myf\n/rLO6ad9/9NTZe7CnxysMveVd9b5toVDZ5a/N824aF/xmZLU3XWs+MwdN96lV3+5u+MxsNzBgcQI\nHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgc\nSIzAgcQIHEis6Q8fnJAFpx/Qpz/zUPG5G+748+IzJenAOeUPMuzdXudwxIPn1zl48tCKKh8K+t7F\nX6sy99pPX1d85ux/qXPoYhw/XnzmzpeaHeTIHRxIjMCBxAgcSIzAgcQIHEiMwIHECBxIrFHgtj9n\ne7vtn9u+13adL/ICKKpj4LYXSbpeUn9EvFtSl6Qrai8GYPKaPkTvlnSa7W5JcyQ9V28lAKV0DDwi\nfi3pVkm7JO2W9EpEPPL662yvsT1ge+A3e+u8nBLAxDR5iD5f0mpJSyWdKanX9pWvvy4i1kVEf0T0\n9/3BrPKbApiwJg/RL5X0dETsiYjXJG2SdFHdtQCU0CTwXZIutD3HtiWtkjRYdy0AJTT5HHyzpI2S\ntkh6cuy/WVd5LwAFNPom4Ii4RdItlXcBUBivZAMSI3AgMQIHEiNwIDECBxKrcpTmDB1XX9fh4nP3\nX3Sk+ExJOvLwsuIz1/3NHcVnStJNX7m2ytyZr3ZVmXvN3ddXmft36zcUn3n7u95bfKYknf/fI8Vn\nbv1Us5ncwYHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCBxAgcSIzAgcQIHEiMwIHECBxIjMCB\nxAgcSIzAgcQIHEiMwIHECBxIjMCBxBwR5YfaeyQ90+DSBZJeKr5APdNp3+m0qzS99p0Ku749Ik7v\ndFGVwJuyPRAR/a0tMEHTad/ptKs0vfadTrvyEB1IjMCBxNoOfF3L//+Jmk77Tqddpem177TZtdXP\nwQHU1fYdHEBFrQVu+0O2d9gesn1zW3t0YnuJ7UdtD9rebvuGtndqwnaX7a22v9v2LuOxPc/2Rtu/\nGPs7/kDbO43H9ufGPg5+bvte2z1t7zSeVgK33SXpTkkflrRc0idtL29jlwZGJN0UEe+SdKGkv53C\nu57oBkmDbS/RwNclPRQR50l6r6bwzrYXSbpeUn9EvFtSl6Qr2t1qfG3dwd8vaSgidkbEUUn3SVrd\n0i7jiojdEbFl7PcHNfoBuKjdrcZne7Gkj0pa3/Yu47E9V9LFkr4hSRFxNCL2t7tVR92STrPdLWmO\npOda3mdcbQW+SNKzJ7w9rCkejSTZPkvSCkmb292ko9slfUHS8bYX6WCZpD2S7h77dGK97d62lzqZ\niPi1pFsl7ZK0W9IrEfFIu1uNr63A/Qbvm9JP59vuk/RtSTdGxIG29zkZ25dJejEiHm97lwa6JV0g\naW1ErJB0SNJUfj5mvkYfaS6VdKakXttXtrvV+NoKfFjSkhPeXqwp/FDH9kyNxn1PRGxqe58OVkq6\n3PavNPqpzyW2N7S70kkNSxqOiP97RLRRo8FPVZdKejoi9kTEa5I2Sbqo5Z3G1VbgP5N0ju2ltmdp\n9ImK+1vaZVy2rdHPEQcj4ra29+kkIr4UEYsj4iyN/r3+KCKm5F0mIp6X9Kztc8fetUrSUy2u1Mku\nSRfanjP2cbFKU/hJQWn0IdKbLiJGbH9W0sMafSbyrojY3sYuDayUdJWkJ21vG3vflyPiwRZ3yuQ6\nSfeM/UO/U9LVLe9zUhGx2fZGSVs0+tWVrZrir2rjlWxAYrySDUiMwIHECBxIjMCBxAgcSIzAgcQI\nHEiMwIHEfgdwPctS4OQ+QAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xb047588>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAACn1JREFUeJzt3c+v3XMex/HXa25JlRFUN9pmSmLM\niIwhJx0/EguVYAibWZCQjE03gxKJMBv/gAgLkTR+bAiLshARNfFjMZtylRnqMhGM1o+4UxkVYkq9\nZnHvJGXae77t/X5873l7PhJJ73Ucr5zep++5555+OIkA1PSzoQcAaIfAgcIIHCiMwIHCCBwojMCB\nwggcKIzAgcIIHChsWYs7PfGEqaxbe0SLu27iH39f0ft9/vI3X/V+ny21eAykdo/DJP2etdj6tb7U\n3vzH427nFm9VHZ25PC9tXdv7/bZy8Um/7f0+t370Wu/32VKLx0Bq9zhM0u9Zi63b8pz25LOxgfMU\nHSiMwIHCCBwojMCBwggcKIzAgcI6BW77Ettv237H9m2tRwHox9jAbU9JulfSpZJOl3S17dNbDwOw\neF2u4OslvZPk3SR7JT0m6cq2swD0oUvgqyXt3O/jXfOf+x7bG21P256e3b2vr30AFqFL4Ad6O9z/\nvb81yeYkoySjVSunFr8MwKJ1CXyXpP3fWL5G0kdt5gDoU5fAX5Z0qu2TbR8p6SpJT7adBaAPY/+4\naJJvbV8vaaukKUkPJtnRfBmARev058GTPC3p6cZbAPSMd7IBhRE4UBiBA4UROFAYgQOFNTlVtZVJ\nOhhwkra2NEmPwyRtXX9xtxNguYIDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4UROFAYgQOF\nEThQGIEDhRE4UBiBA4UROFAYgQOFEThQGIEDhRE4UBiBA4VN1KmqrbQ4TbPV6aeTdPKn1G7vJP2e\nDYkrOFAYgQOFEThQGIEDhRE4UBiBA4WNDdz2Wtsv2J6xvcP2ph9jGIDF6/Jz8G8l3ZJku+2fS3rF\n9l+SvNl4G4BFGnsFT/Jxku3zv/5C0oyk1a2HAVi8Q/oe3PY6SWdJ2tZiDIB+dQ7c9jGSHpd0U5I9\nB/j7G21P256e3b2vz40ADlOnwG0fobm4H0nyxIFuk2RzklGS0aqVU31uBHCYuryKbkkPSJpJclf7\nSQD60uUKfr6kayVdaPu1+b9+33gXgB6M/TFZkr9K8o+wBUDPeCcbUBiBA4UROFAYgQOFEThQGIcu\nNtLqsMFWJm1vxQMSW+AKDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4URuBAYQQOFEbgQGEE\nDhRG4EBhBA4URuBAYQQOFEbgQGEEDhRG4EBhBA4UNlGnqrY6SbPFiaKTtLUlHodhT4DlCg4URuBA\nYQQOFEbgQGEEDhRG4EBhBA4U1jlw21O2X7X9VMtBAPpzKFfwTZJmWg0B0L9OgdteI+kySfe3nQOg\nT12v4HdLulXSdwe7ge2NtqdtT8/u3tfLOACLMzZw25dL+jTJKwvdLsnmJKMko1Urp3obCODwdbmC\nny/pCtvvS3pM0oW2H266CkAvxgae5PYka5Ksk3SVpOeTXNN8GYBF4+fgQGGH9OfBk7wo6cUmSwD0\njis4UBiBA4UROFAYgQOFEThQmJP0fqejM5fnpa1re79ftDNJp5S2MkknwG7Lc9qTzzzudlzBgcII\nHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggcKIzAgcIIHCiMwIHCCBwojMCBwggc\nKIzAgcIIHCiMwIHCDun/TTa0Vid/tjpNE5N1UmlFXMGBwggcKIzAgcIIHCiMwIHCCBworFPgto+z\nvcX2W7ZnbJ/behiAxev6c/B7JD2T5A+2j5S0ouEmAD0ZG7jtYyVdIOmPkpRkr6S9bWcB6EOXp+in\nSJqV9JDtV23fb/voxrsA9KBL4MsknS3pviRnSfpS0m0/vJHtjbanbU/P7t7X80wAh6NL4Lsk7Uqy\nbf7jLZoL/nuSbE4ySjJatXKqz40ADtPYwJN8Immn7dPmP7VB0ptNVwHoRddX0W+Q9Mj8K+jvSrqu\n3SQAfekUeJLXJI0abwHQM97JBhRG4EBhBA4URuBAYQQOFEbgQGFO0vudHusT8jtv6P1+Of2U00Rb\nmqSvr/UX79T03772uNtxBQcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAw\nAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgsCaHLo7OXJ6Xtq7t/X5bHTjY4rC9Sdo6iX7qh09u\ny3Pak884dBH4KSNwoDACBwojcKAwAgcKI3CgMAIHCusUuO2bbe+w/YbtR20vbz0MwOKNDdz2akk3\nSholOUPSlKSrWg8DsHhdn6Ivk3SU7WWSVkj6qN0kAH0ZG3iSDyXdKekDSR9L+jzJsz+8ne2Ntqdt\nT8/u3tf/UgCHrMtT9OMlXSnpZEknSTra9jU/vF2SzUlGSUarVk71vxTAIevyFP0iSe8lmU3yjaQn\nJJ3XdhaAPnQJ/ANJ59heYduSNkiaaTsLQB+6fA++TdIWSdslvT7/z2xuvAtAD5Z1uVGSOyTd0XgL\ngJ7xTjagMAIHCiNwoDACBwojcKCwTq+iLxWtThRtcULnJG2dRD/1k3DXX/xVp9txBQcKI3CgMAIH\nCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcK\nI3CgMAIHCnOS/u/UnpX0zw43PVHSv3of0M4k7Z2krdJk7V0KW3+RZNW4GzUJvCvb00lGgw04RJO0\nd5K2SpO1d5K28hQdKIzAgcKGDnzzwP/+QzVJeydpqzRZeydm66DfgwNoa+grOICGBgvc9iW237b9\nju3bhtoxju21tl+wPWN7h+1NQ2/qwvaU7VdtPzX0loXYPs72FttvzT/G5w69aSG2b57/OnjD9qO2\nlw+9aSGDBG57StK9ki6VdLqkq22fPsSWDr6VdEuSX0s6R9KflvDW/W2SNDP0iA7ukfRMkl9JOlNL\neLPt1ZJulDRKcoakKUlXDbtqYUNdwddLeifJu0n2SnpM0pUDbVlQko+TbJ//9Rea+wJcPeyqhdle\nI+kySfcPvWUhto+VdIGkByQpyd4k/x521VjLJB1le5mkFZI+GnjPgoYKfLWknft9vEtLPBpJsr1O\n0lmStg27ZKy7Jd0q6buhh4xxiqRZSQ/Nfztxv+2jhx51MEk+lHSnpA8kfSzp8yTPDrtqYUMF7gN8\nbkm/nG/7GEmPS7opyZ6h9xyM7cslfZrklaG3dLBM0tmS7ktylqQvJS3l12OO19wzzZMlnSTpaNvX\nDLtqYUMFvkvS2v0+XqMl/FTH9hGai/uRJE8MvWeM8yVdYft9zX3rc6Hth4eddFC7JO1K8r9nRFs0\nF/xSdZGk95LMJvlG0hOSzht404KGCvxlSafaPtn2kZp7oeLJgbYsyLY19z3iTJK7ht4zTpLbk6xJ\nsk5zj+vzSZbkVSbJJ5J22j5t/lMbJL054KRxPpB0ju0V818XG7SEXxSU5p4i/eiSfGv7eklbNfdK\n5INJdgyxpYPzJV0r6XXbr81/7s9Jnh5wUyU3SHpk/j/070q6buA9B5Vkm+0tkrZr7qcrr2qJv6uN\nd7IBhfFONqAwAgcKI3CgMAIHCiNwoDACBwojcKAwAgcK+y+Qlolk5IOqTAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0xb0de518>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import os\n",
    "import tempfile\n",
    "import subprocess\n",
    "import tempfile\n",
    "import shutil\n",
    "\n",
    "import numpy as np\n",
    "import nibabel as nib\n",
    "os.environ[\"FSLOUTPUTTYPE\"] = \"NIFTI_GZ\"\n",
    "\n",
    "def binarise(data):\n",
    "    # Remember the directory where we started\n",
    "    cwd_orig = os.getcwd()\n",
    "    try:\n",
    "        # Create a temporary directory\n",
    "        tempdir = tempfile.mkdtemp(\"fsl\")\n",
    "        \n",
    "        # Save input data in temp directory\n",
    "        os.chdir(tempdir)\n",
    "        tmpin = nib.Nifti1Image(data, np.identity(4))\n",
    "        tmpin.to_filename(\"in.nii.gz\")\n",
    "        \n",
    "        # Run a command from $FSLDIR\n",
    "        fslmaths = os.path.join(os.environ[\"FSLDIR\"], \"bin\", \"fslmaths\")\n",
    "        \n",
    "        # We could use os.system here if we don't care about returning the stdout/stderr\n",
    "        p = subprocess.Popen([fslmaths, \"in.nii.gz\", \"-thr\", \"0.5\", \"-bin\", \"out.nii.gz\"], \n",
    "                             stdout=subprocess.PIPE, stderr=subprocess.STDOUT)\n",
    "        cmd_stdout = \"\"\n",
    "        while 1:\n",
    "            retcode = p.poll()\n",
    "            cmd_stdout += p.stdout.readline()\n",
    "            if retcode is not None: break\n",
    "        if retcode != 0:\n",
    "            raise RuntimeError(\"Error: %s\" % cmd_stdout)\n",
    "        \n",
    "        # Load the output file and return it with the command standard output\n",
    "        out_nii = nib.load(\"out.nii.gz\")\n",
    "        return out_nii.get_data(), cmd_stdout\n",
    "    finally:\n",
    "        # Change back to our starting directory\n",
    "        os.chdir(cwd_orig)\n",
    "\n",
    "data = np.random.rand(10, 10, 10, 10)\n",
    "plt.imshow(data[:,:,5,5])\n",
    "plt.show()\n",
    "\n",
    "output, stdout = binarise(data)\n",
    "plt.imshow(output[:,:,5,5])\n",
    "plt.show()\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Summary\n",
    "\n",
    "## What we've done\n",
    "\n",
    " - It's not that hard to call existing C++ code from Python\n",
    " - Need to be a bit careful with Numpy arrays\n",
    " - Cython is probably the easiest method\n",
    " - Data copying can be minimised by passing data as C arrays (`float *` etc)\n",
    " - `ctypes` may be a good alternative if you have binary compatibility issues\n",
    " - Can always wrap a command line tool as a way of getting started!\n",
    " \n",
    " \n",
    " "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}