Skip to content
Snippets Groups Projects
Commit 72a00c06 authored by Mark Jenkinson's avatar Mark Jenkinson
Browse files

ipynb update only

parent f0c87987
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id: tags:
# Plotting with python
The main plotting module in python is `matplotlib`. There is a lot
that can be done with it - see the [webpage](https://matplotlib.org/gallery/index.html)
## Inside a notebook
Inside a jupyter notebook you get access to this in a slightly
different way, compared to other modules:
%% Cell type:code id: tags:
```
%matplotlib inline
```
%% Cell type:markdown id: tags:
This only needs to be done once in a notebook, like for standard imports.
> There are also interactive versions - see the practical on Jupyter notebooks for more information about this.
The library works very similarly to plotting in matlab. Let's start
with some simple examples.
### 2D plots
%% Cell type:code id: tags:
```
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-np.pi, np.pi, 256)
cosx, sinx = np.cos(x), np.sin(x)
plt.plot(x, cosx)
plt.plot(x, sinx, color='red', linewidth=4, linestyle='-.')
plt.plot(x, sinx**2)
plt.xlim(-np.pi, np.pi)
plt.title('Our first plots')
```
%% Cell type:markdown id: tags:
### Histograms and bar charts
For a simple histogram you can do this:
%% Cell type:code id: tags:
```
r = np.random.rand(1000)
n,bins,_ = plt.hist((r-0.5)**2, bins=30)
```
%% Cell type:markdown id: tags:
where it also returns the number of elements in each bin, as `n`, and
the bin centres, as `bins`. The `_` in the third part on the left
hand side is a shorthand for just throwing away the corresponding part
of the return structure.
There is also a call for doing bar plots:
%% Cell type:code id: tags:
```
fig, ax = plt.subplots()
samp1 = r[0:10]
samp2 = r[10:20]
bwidth = 0.3
xcoord = np.arange(10)
ax.bar(xcoord-bwidth, samp1, width=bwidth, color='red', label='Sample 1')
ax.bar(xcoord, samp2, width=bwidth, color='blue', label='Sample 2')
ax.legend(loc='upper left')
```
%% Cell type:markdown id: tags:
Note that the first line returns a handle to the axis, as `ax`, that
we can use instead of `plt`
### Scatter plots
%% Cell type:code id: tags:
```
fig, ax = plt.subplots()
ssize = 100*abs(samp1-samp2) # just an arbitrary example
# setup some sizes for each point (arbitrarily example here)
ssize = 100*abs(samp1-samp2) + 10
ax.scatter(samp1, samp2, s=ssize, alpha=0.5)
# now add the y=x line
allsamps = np.hstack((samp1,samp2))
ax.plot([min(allsamps),max(allsamps)],[min(allsamps),max(allsamps)], color='red', linestyle='--')
plt.xlim(min(allsamps),max(allsamps))
plt.ylim(min(allsamps),max(allsamps))
```
%% Cell type:markdown id: tags:
### Subplots
%% Cell type:code id: tags:
```
plt.subplot(2, 1, 1)
plt.plot(x,cosx, '.-')
plt.xlim(-np.pi, np.pi)
plt.ylabel('Full sampling')
plt.subplot(2, 1, 2)
plt.plot(x[::30], cosx[::30], '.-')
plt.xlim(-np.pi, np.pi)
plt.ylabel('Subsampled')
```
%% Cell type:markdown id: tags:
### Displaying images
%% Cell type:code id: tags:
```
import nibabel as nib
import os.path as op
nim = nib.load(op.expandvars('${FSLDIR}/data/standard/MNI152_T1_1mm.nii.gz'), mmap=False)
imdat = nim.get_data().astype(float)
plt.imshow(imdat[:,:,70], cmap=plt.cm.gray)
plt.colorbar()
```
%% Cell type:markdown id: tags:
### 3D plots
%% Cell type:code id: tags:
```
# Taken from https://matplotlib.org/gallery/mplot3d/wire3d.html#sphx-glr-gallery-mplot3d-wire3d-py
from mpl_toolkits.mplot3d import axes3d
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Grab some test data.
X, Y, Z = axes3d.get_test_data(0.05)
# Plot a basic wireframe.
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
```
%% Cell type:markdown id: tags:
Surface renderings are many other plots are possible - see 3D examples on
the [matplotlib webpage](https://matplotlib.org/gallery/index.html#mplot3d-examples-index)
## Plotting from standalone scripts
When running from a standalone script, the same `matplotlib` import is required,
but the line `%matplotlib <backend>` should *not* be used.
In a script it is necessary to also _finish_ with `plt.show()` as
otherwise nothing is actually displayed. For example, the above
examples would setup a plot but the actual graphic would only appear
after the `plt.show()` command was executed. Furthermore, control is
not returned to the script immediately as the plot is interactive by default.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment