Newer
Older
#!/usr/bin/env python
#
# featimage.py - An Image subclass which has some FEAT-specific functionality.
#
# Author: Paul McCarthy <pauldmccarthy@gmail.com>
#
"""This module provides the :class:`FEATImage` class, a subclass of
:class:`.Image` designed to encapsulate data from a FEAT analysis.
from . import featanalysis
class FEATImage(fslimage.Image):
"""An ``Image`` from a FEAT analysis.
The :class:`FEATImage` class makes use of the functions defined in the
:mod:`.featanalysis` module.
An example of using the ``FEATImage`` class::
import fsl.data.featimage as featimage
# You can pass in the name of the
# .feat directory, or any file
# contained within that directory.
img = featimage.FEATImage('myanalysis.feat/filtered_func_data.nii.gz')
# Query information about the FEAT analysis
print img.numEVs()
print img.contrastNames()
print img.numPoints()
# Get the model fit residuals
res4d = img.getResiduals()
# Get the full model fit for voxel
# [23, 30, 42] (in this example, we
# have 4 EVs - the first argument
# is a contrast vector).
img.fit([1, 1, 1, 1], [23, 30, 42], fullmodel=True)
"""
def __init__(self, path, **kwargs):
"""Create a ``FEATImage`` instance.
:arg path: A FEAT analysis directory, or an image file contained
within such a directory.
:arg kwargs: Passed to the :class:`.Image` constructor.
.. note:: If a FEAT directory is passed in for the ``path``
argument, this ``FEATImage`` instance will encapsulate
the model input data, typically called
``<directory>.feat/filtered_func_data.nii.gz``.
"""
if op.isdir(path):
path = op.join(path, 'filtered_func_data')
if not featanalysis.isFEATImage(path):
raise ValueError('{} does not appear to be data '
'from a FEAT analysis'.format(path))
featDir = op.dirname(path)
settings = featanalysis.loadSettings( featDir)
if featanalysis.hasStats(featDir):
design = featanalysis.loadDesign( featDir, settings)
names, cons = featanalysis.loadContrasts(featDir)
design = None
names, cons = [], []
fslimage.Image.__init__(self, path, **kwargs)
self.__analysisName = op.splitext(op.basename(featDir))[0]
self.__featDir = featDir
self.__design = design
self.__contrastNames = names
self.__contrasts = cons
self.__settings = settings
self.__residuals = None
self.__pes = [None] * self.numEVs()
self.__copes = [None] * self.numContrasts()
self.__zstats = [None] * self.numContrasts()
self.__clustMasks = [None] * self.numContrasts()
self.name = '{}: {}'.format(self.__analysisName, self.name)
def getFEATDir(self):
"""Returns the FEAT directory this image is contained in."""
return self.__featDir
"""Returns the FEAT analysis name, which is the FEAT directory
name, minus the ``.feat`` / ``.gfeat`` suffix.
"""
def getTopLevelAnalysisDir(self):
"""Returns the path to the higher level analysis directory of
which this FEAT analysis is a part, or ``None`` if this analysis
is not part of another analysis.
"""
return featanalysis.getTopLevelAnalysisDir(self.__featDir)
def hasStats(self):
"""Returns ``True`` if the analysis for this ``FEATImage`` contains
a statistical analysis.
"""
return self.__design is not None
def getDesign(self, voxel=None):
"""Returns the analysis design matrix as a :mod:`numpy` array
with shape :math:`numPoints\\times numEVs`.
See :meth:`.FEATFSFDesign.getDesign`.
if self.__design is None:
return None
return self.__design.getDesign(voxel)
def numPoints(self):
"""Returns the number of points (e.g. time points, number of
subjects, etc) in the analysis.
"""
if self.__design is None:
return self.__design.getDesign().shape[0]
def numEVs(self):
"""Returns the number of explanatory variables (EVs) in the analysis.
"""
if self.__design is None:
return len(self.__design.getEVs())
def evNames(self):
"""Returns a list containing the name of each EV in the analysis."""
if self.__design is None:
return [ev.title for ev in self.__design.getEVs()]
def numContrasts(self):
"""Returns the number of contrasts in the analysis."""
return len(self.__contrasts)
def contrastNames(self):
"""Returns a list containing the name of each contrast in the analysis.
"""
return list(self.__contrastNames)
def contrasts(self):
"""Returns a list containing the analysis contrast vectors.
See :func:`.featanalysis.loadContrasts`
return [list(c) for c in self.__contrasts]
def thresholds(self):
"""Returns the statistical thresholds used in the analysis.
See :func:`.featanalysis.getThresholds`
return featanalysis.getThresholds(self.__settings)
def clusterResults(self, contrast):
"""Returns the clusters found in the analysis.
See :func:.featanalysis.loadClusterResults`
return featanalysis.loadClusterResults(self.__featDir,
self.__settings,
contrast)
def getPE(self, ev):
"""Returns the PE image for the given EV (0-indexed). """
if self.__pes[ev] is None:
pefile = featanalysis.getPEFile(self.__featDir, ev)
self.__pes[ev] = fslimage.Image(
pefile,
name='{}: PE{} ({})'.format(
self.__analysisName,
ev + 1,
self.evNames()[ev]))
return self.__pes[ev]
def getResiduals(self):
"""Returns the residuals of the full model fit. """
if self.__residuals is None:
resfile = featanalysis.getResidualFile(self.__featDir)
self.__residuals = fslimage.Image(
resfile,
name='{}: residuals'.format(self.__analysisName))
return self.__residuals
def getCOPE(self, con):
"""Returns the COPE image for the given contrast (0-indexed). """
if self.__copes[con] is None:
copefile = featanalysis.getPEFile(self.__featDir, con)
self.__copes[con] = fslimage.Image(
copefile,
name='{}: COPE{} ({})'.format(
self.__analysisName,
con + 1,
self.contrastNames()[con]))
return self.__copes[con]
def getZStats(self, con):
"""Returns the Z statistic image for the given contrast (0-indexed).
"""
if self.__zstats[con] is None:
zfile = featanalysis.getZStatFile(self.__featDir, con)
self.__zstats[con] = fslimage.Image(
zfile,
name='{}: zstat{} ({})'.format(
self.__analysisName,
con + 1,
self.contrastNames()[con]))
return self.__zstats[con]
def getClusterMask(self, con):
"""Returns the cluster mask image for the given contrast (0-indexed).
"""
if self.__clustMasks[con] is None:
mfile = featanalysis.getClusterMaskFile(self.__featDir, con)
self.__clustMasks[con] = fslimage.Image(
mfile,
name='{}: cluster mask for zstat{} ({})'.format(
self.__analysisName,
con + 1,
self.contrastNames()[con]))
return self.__clustMasks[con]
Paul McCarthy
committed
def fit(self, contrast, xyz, fullmodel=False):
"""Calculates the model fit for the given contrast vector
at the given voxel.
Passing in a contrast of all 1s, and ``fullmodel=True`` will
get you the full model fit. Pass in ``fullmodel=False`` for
all other contrasts, otherwise the model fit values will not
be scaled correctly.
:arg contrast: The contrast vector (pass all 1s for a full model
fit).
:arg xyz: Coordinates of the voxel to calculate the model fit
for.
:arg fullmodel: Set to ``True`` for a full model fit, ``False``
otherwise.
"""
Paul McCarthy
committed
if self.__design is None:
raise RuntimeError('No design')
Paul McCarthy
committed
if not fullmodel:
contrast = np.array(contrast)
contrast = contrast / np.sqrt((contrast ** 2).sum())
x, y, z = xyz
numEVs = self.numEVs()
if len(contrast) != numEVs:
raise ValueError('Contrast is wrong length')
Paul McCarthy
committed
X = self.__design.getDesign(xyz)
data = self[x, y, z, :]
modelfit = np.zeros(len(data))
for i in range(numEVs):
pe = self.getPE(i)[x, y, z]
Paul McCarthy
committed
modelfit += X[:, i] * pe * contrast[i]
return modelfit + data.mean()
def partialFit(self, contrast, xyz, fullmodel=False):
"""Calculates and returns the partial model fit for the specified
contrast vector at the specified voxel.
See :meth:`fit` for details on the arguments.
"""
x, y, z = xyz
residuals = self.getResiduals()[x, y, z, :]
modelfit = self.fit(contrast, xyz, fullmodel)
return residuals + modelfit