Newer
Older
#!/usr/bin/env python
#
# resample.py - The resample functino
#
# Author: Paul McCarthy <pauldmccarthy@gmail.com>
#
"""This module defines the :func:`resample` function, which can be used
to resample an :class:`.Image` object to a different resolution.
The :func:`resampleToPixdims` and :func:`resampleToReference` functions
are convenience wrappers around :func:`resample`.
The :func:`applySmoothing` and :func:`calculateMatrix` functions are
sub-functions of :func:`resample`.
"""
import collections.abc as abc
import numpy as np
import scipy.ndimage as ndimage
import fsl.utils.transform as transform
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def resampleToPixdims(image, newPixdims, **kwargs):
"""Resample ``image`` so that it has the specified voxel dimensions.
This is a wrapper around :func:`resample` - refer to its documenttion
for details on the other arguments and the return values.
:arg image: :class:`.Image` to resample
:arg pixdims: New voxel dimensions to resample ``image`` to.
"""
oldShape = image.shape
oldPixdims = image.pixdim
fac = [o / float(n) for o, n in zip(oldPixdims, newPixdims)]
newShape = [p * f for p, f in zip(oldShape, fac)]
return resample(image, newShape, **kwargs)
def resampleToReference(image, reference, **kwargs):
"""Resample ``image`` into the space of the ``reference``.
This is a wrapper around :func:`resample` - refer to its documenttion
for details on the other arguments and the return values.
:arg image: :class:`.Image` to resample
:arg reference: :class:`.Nifti` defining the space to resample ``image``
into
"""
kwargs['mode'] = kwargs.get('mode', 'constant')
kwargs['newShape'] = reference.shape
kwargs['matrix'] = transform.concat(image.worldToVoxMat,
reference.voxToWorldMat)
return resample(image, **kwargs)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def resample(image,
newShape,
sliceobj=None,
dtype=None,
order=1,
smooth=True,
origin='centre',
matrix=None,
mode='nearest',
cval=0):
"""Returns a copy of the data in the ``image``, resampled to the specified
``newShape``.
The space that the image is resampled into can be defined in one of the
following ways, in decreasing order of precedence:
1. If a ``matrix`` is provided, it is applied to the voxel coordinates
when retrieving values from the ``image``
2. Otherwise the image is simply scaled according to the ratio calculated
by ``image.shape / newShape``. In this case the ``origin`` argument
may be used to adjust the alignemnt of the original and resampled
voxel grids.
See the ``scipy.ndimage.affine_transform`` function for more details,
particularly on the ``order``, ``matrix``, ``mode`` and
``cval`` arguments.
:arg newShape: Desired shape. May containg floating point values, in which
case the resampled image will have shape
``round(newShape)``, but the voxel sizes will have scales
``self.shape / newShape`` (unless ``matrix`` is specified).
:arg sliceobj: Slice into this ``Image``. If ``None``, the whole
image is resampled, and it is assumed that it has the
same number of dimensions as ``newShape``. A
:exc:`ValueError` is raised if this is not the case.
:arg dtype: ``numpy`` data type of the resampled data. If ``None``,
the :meth:`dtype` of this ``Image`` is used.
:arg order: Spline interpolation order, passed through to the
``scipy.ndimage.affine_transform`` function - ``0``
corresponds to nearest neighbour interpolation, ``1``
(the default) to linear interpolation, and ``3`` to
cubic interpolation.
:arg smooth: If ``True`` (the default), the data is smoothed before
being resampled, but only along axes which are being
down-sampled (i.e. where ``newShape[i] < self.shape[i]``).
:arg origin: ``'centre'`` (the default) or ``'corner'``. ``'centre'``
resamples the image such that the centre of the corner
voxels of this image and the resampled data are
aligned. ``'corner'`` resamples the image such that
the corner of the corner voxels are aligned (and
therefore the voxel grids are aligned).
Ignored if ``offset`` or ``matrix`` is specified.
:arg matrix: Arbitrary affine transformation matrix to apply to the
voxel coordinates of ``image`` when resampling.
:arg mode: How to handle regions which are outside of the image FOV.
Defaults to `''nearest'``.
:arg cval: Constant value to use when ``mode='constant'``.
:returns: A tuple containing:
- A ``numpy`` array of shape ``newShape``, containing
an interpolated copy of the data in this ``Image``.
- A ``numpy`` array of shape ``(4, 4)``, containing the
adjusted voxel-to-world transformation for the spatial
dimensions of the resampled data.
"""
if sliceobj is None: sliceobj = slice(None)
if dtype is None: dtype = image.dtype
if origin == 'center': origin = 'centre'
if origin not in ('centre', 'corner'):
raise ValueError('Invalid value for origin: {}'.format(origin))
data = np.array(image[sliceobj], dtype=dtype, copy=False)
if len(data.shape) != len(newShape):
raise ValueError('Data dimensions do not match new shape: '
'len({}) != len({})'.format(data.shape, newShape))
# If matrix not provided, calculate
# a scaling/offset matrix from the
# old/new shape ratio and the origin
# setting.
if matrix is None:
matrix = calculateMatrix(data.shape, newShape, origin)
# calculateMatrix will return None
# if it decides that the image
# doesn't need to be resampled
if matrix is None:
return data, image.voxToWorldMat
newShape = np.array(np.round(newShape), dtype=np.int)
# Apply smoothing if requested,
# and if not using nn interp
if order > 0 and smooth:
data = applySmoothing(data, matrix, newShape)
# Do the resample thing
data = ndimage.affine_transform(data,
matrix,
output_shape=newShape,
order=order,
mode=mode,
cval=cval)
# Construct an affine transform which
# puts the resampled image into the
# same world coordinate system as this
# image. The calculateMatrix function
# might not return a 4x4 matrix, so we
# make sure it is valid.
if matrix.shape != (4, 4):
matrix = np.vstack((matrix[:3, :4], [0, 0, 0, 1]))
matrix = transform.concat(image.voxToWorldMat, matrix)
return data, matrix
def applySmoothing(data, matrix, newShape):
"""Called by the :func:`resample` function.
If interpolating and smoothing, we apply a gaussian filter along axes with
a resampling ratio greater than 1.1. We do this so that interpolation has
an effect when down-sampling to a resolution where the voxel centres are
aligned (as otherwise any interpolation regime will be equivalent to
nearest neighbour). This more-or-less mimics the behaviour of FLIRT.
See the ``scipy.ndimage.gaussian_filter`` function for more details.
:arg data: Data to be smoothed.
:arg matrix: Affine matrix to be used during resampling. The voxel
scaling factors are extracted from this.
:arg newShape: Shape the data is to be resampled into.
:returns: A smoothed copy of ``data``.
"""
ratio = transform.decompose(matrix[:3, :3])[0]
if len(newShape) > 3:
ratio = np.concatenate((
ratio,
[float(o) / float(s)
for o, s in zip(data.shape[3:], newShape[3:])]))
sigma = np.array(ratio)
sigma[ratio < 1.1] = 0
sigma[ratio >= 1.1] *= 0.425
return ndimage.gaussian_filter(data, sigma)
def calculateMatrix(oldShape, newShape, origin):
"""Calculates an affine matrix to use for resampling.
Called by :func:`resample`. The matrix will contain scaling factors
determined from the ``oldShape / newShape`` ratio, and an offset
determined from the ``origin``.
:arg oldShape: Shape of input data
:arg newShape: Shape to resample data to
:arg origin: Voxel grid alignment - either ``'centre'`` or ``'corner'``
:returns: An affine matrix that can be passed to
``scipy.ndimage.affine_transform``.
"""
oldShape = np.array(oldShape, dtype=np.float)
newShape = np.array(newShape, dtype=np.float)
if np.all(np.isclose(oldShape, newShape)):
return None
# Otherwise we calculate a
# scaling matrix from the
# old/new shape ratio, and
# specify an offset
# according to the origin
else:
ratio = oldShape / newShape
scale = np.diag(ratio)
# Calculate an offset from the
# origin - the default behaviour
# (centre) causes the corner voxel
# of the output to have the same
# centre as the corner voxel of
# the input. If the origin is
# 'corner', we apply an offset
# which effectively causes the
# voxel grids of the input and
# output to be aligned.
if origin == 'centre': offset = 0
elif origin == 'corner': offset = list((ratio - 1) / 2)
if not isinstance(offset, abc.Sequence):
offset = [offset] * len(newShape)
# ndimage.affine_transform will accept
# a matrix of shape (ndim, ndim + 1)
matrix = np.hstack((scale, np.atleast_2d(offset).T))
return matrix