Skip to content
Snippets Groups Projects
cifti.py 18.3 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
"""
Provides a sparse representation of volumetric and/or surface data

The data can be either defined per voxel/vertex (:class:`DenseCifti`) or per parcel (`class:`ParcelCifti`).

The data can be read from NIFTI, GIFTI, or CIFTI files.
Non-sparse volumetric or surface representations can be extracte.
"""
from nibabel.cifti2 import cifti2_axes
from typing import Sequence
import numpy as np
from fsl.data.image import Image
import nibabel as nib
from fsl.utils.path import addExt


dense_extensions = {
    cifti2_axes.BrainModelAxis: '.dconn.nii',
    cifti2_axes.ParcelsAxis: '.dpconn.nii',
    cifti2_axes.SeriesAxis: '.dtseries.nii',
    cifti2_axes.ScalarAxis: '.dscalar.nii',
    cifti2_axes.LabelAxis: '.dlabel.nii',
}

parcel_extensions = {
    cifti2_axes.BrainModelAxis: '.pdconn.nii',
    cifti2_axes.ParcelsAxis: '.pconn.nii',
    cifti2_axes.SeriesAxis: '.ptseries.nii',
    cifti2_axes.ScalarAxis: '.pscalar.nii',
    cifti2_axes.LabelAxis: '.plabel.nii',
}


class Cifti:
    """
    Parent class for the two types of CIFTI files.

    The type of the CIFTI file is determined by the last axis, which can be one of:

    - :py:class:`BrainModelAxis <cifti2_axes.BrainModelAxis>`
    - :py:class:`ParcelsAxis <cifti2_axes.ParcelsAxis>`
    """
    def __init__(self, arr: np.ndarray, axes: Sequence[cifti2_axes.Axis]):
        """
        Defines a new dataset in greyordinate space

        :param data: (..., N) array for N greyordinates or parcels
        :param axes: sequence of CIFTI axes describing the data along each dimension
        """
        self.arr = arr
        self.axes = axes
        if arr.shape[-len(axes):] != tuple(len(ax) for ax in axes):
            raise ValueError(f"Shape of axes {tuple(len(ax) for ax in axes)} does not match shape of array {self.arr.shape}")

    def to_cifti(self, other_axes=None):
        """
        Create a CIFTI image from the data

        :param other_axes: overwrites the :mod:`cifti2_axes` to be used to write to create the CIFTI image
        :return: nibabel CIFTI image
        """
        if other_axes is None:
            if len(self.axes) != self.data.ndim:
                raise ValueError("Can not store to CIFTI without defining what is stored along the other dimensions")
            other_axes = self.axes[:-1]
        else:
            if len(other_axes) != self.data.ndim - 1:
                raise ValueError("Number of axis does not match dimensionality of the data")
            if tuple(len(ax) for ax in other_axes) != self.data.shape[:-1]:
                raise ValueError("Size of other axes does not match data size")

        data = self.data
        if data.ndim == 1:
            # CIFTI axes are always at least 2D
            data = data[None, :]
            other_axes = [cifti2_axes.ScalarAxis(['default'])]

        return cifti2_axes.Cifti2Image(
            data,
            header=list(other_axes) + [self.axes[-1]]
        )

    @classmethod
    def from_cifti(cls, filename, writable=False):
        """
        Creates new greyordinate object from dense CIFTI file

        :param filename: CIFTI filename or :class:`nib.Cifti2Image` object
        :param writable: if True, opens data array in writable mode
        """
        if isinstance(filename, str):
            img = nib.load(filename)
        else:
            img = filename

        if not isinstance(img, nib.Cifti2Image):
            raise ValueError(f"Input {filename} should be CIFTI filename or nibabel Cifti2Image")

        if writable:
            data = np.memmap(filename, img.dataobj.dtype, mode='r+',
                             offset=img.dataobj.offset, shape=img.shape, order='F')
        else:
            data = np.asanyarray(img.dataobj)

        axes = [img.header.get_axis(idx) for idx in range(data.ndim)]

        if isinstance(axes[-1], cifti2_axes.BrainModelAxis):
            return DenseCifti(data, axes)
        elif isinstance(axes[-1], cifti2_axes.ParcelsAxis):
            return ParcelCifti(data, axes)
        raise ValueError("Last axis of CIFTI object should be a BrainModelAxis or ParcelsAxis")

    def write(self, cifti_filename, other_axes=None):
        """
        Writes this sparse representation to/from a filename

        :param cifti_filename: output filename
        :param other_axes: overwrites the :mod:`cifti2_axes` to be used to write to the file
        :return:
        """
        self.to_cifti(other_axes).to_filename(addExt(cifti_filename, defaultExt=self.extension))

    def read(cls, filename, mask_values=(0, np.nan), writable=False):
        """
        Reads greyordinate data from the given file

        File can be:

        - NIFTI mask
        - GIFTI mask
        - CIFTI file

        :param filename: input filename
        :param mask_values: which values are outside of the mask for NIFTI or GIFTI input
        :param writable: allow to write to disk
        :return: greyordinates object
        """
        if isinstance(filename, str):
            img = nib.load(filename)
        else:
            img = filename

        if isinstance(img, nib.Nifti1Image):
            if writable:
                raise ValueError("Can not open NIFTI file in writable mode")
            return cls.from_image(Image(img), mask_values)
        if isinstance(img, nib.Cifti2Image):
            return cls.from_cifti(img, writable=writable)
        if isinstance(img, nib.GiftiImage):
            if writable:
                raise ValueError("Can not open GIFTI file in writable mode")
            return cls.from_gifti(img, mask_values)
        raise ValueError(f"I do not know how to convert {type(img)} into greyordinates (from {filename})")

    @classmethod
    def from_gifti(cls, filename, mask_values=(0, np.nan)):
        """
        Creates a new greyordinate object from a GIFTI file

        :param filename: GIFTI filename
        :param mask_values: values to mask out
        :return: greyordinate object representing the unmasked vertices
        """
        if isinstance(filename, str):
            img = nib.load(filename)
        else:
            img = filename
        datasets = [darr.data for darr in img.darrays]
        if len(datasets) == 1:
            data = datasets[0]
        else:
            data = np.concatenate(
                [np.atleast_2d(d) for d in datasets], axis=0
            )
        mask = np.ones(data.shape, dtype='bool')
        for value in mask_values:
            if value is np.nan:
                mask &= ~np.isnan(data)
            else:
                mask &= ~(data == value)
        while mask.ndim > 1:
            mask = mask.any(0)

        anatomy = BrainStructure.from_gifti(img)

        bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, name=anatomy.cifti)
        return DenseCifti(data[..., mask], [bm_axes])

    @classmethod
    def from_image(cls, image, mask_values=(np.nan, 0)):
        """
        Creates a new greyordinate object from a NIFTI file

        :param filename: NIFTI filename or Image object
        :param mask_values: which values to mask out
        :return: greyordinate object representing the unmasked voxels
        """
        img = Image(image)

        mask = np.ones(img.data.shape, dtype='bool')
        for value in mask_values:
            if value is np.nan:
                mask &= ~np.isnan(img.data)
            else:
                mask &= ~(img.data == value)
        while mask.ndim > 3:
            mask = mask.any(-1)

        inverted_data = np.transpose(img.data[mask], tuple(range(1, img.data.ndim - 2)) + (0, ))
        bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, affine=img.affine)
        return cifti2_axes.GreyOrdinates(inverted_data, [bm_axes])



class DenseCifti(Cifti):
    """
    Represents sparse data defined for a subset of voxels and vertices (i.e., greyordinates)
    """
    def __init__(self, *args, **kwargs):
        super().__init__(self, *args, **kwargs)
        if not isinstance(self.brain_model_axis, cifti2_axes.BrainModelAxis):
            raise ValueError(f"DenseCifti expects a BrainModelAxis as last axes object, not {type(self.brain_model_axis)}")

    @property
    def brain_model_axis(self, ) -> cifti2_axes.BrainModelAxis:
        return self.axes[-1]

    @property
    def extension(self, ):
        return dense_extensions[type(self.axes[-2])]

    def to_image(self, fill=0) -> Image:
        """
        Get the volumetric data as an :class:`Image`
        """
        if self.brain_model_axis.volume_mask.sum() == 0:
            raise ValueError(f"Can not create volume without voxels in {self}")
        data = np.full(self.brain_model_axis.volume_shape + self.data.shape[:-1], fill,
                       dtype=self.data.dtype)
        voxels = self.brain_model_axis.voxel[self.brain_model_axis.volume_mask]
        data[tuple(voxels.T)] = np.transpose(self.data, (-1,) + tuple(range(self.data.ndim - 1)))[
            self.brain_model_axis.volume_mask]
        return Image(data, xform=self.brain_model_axis.affine)

    def surface(self, anatomy, fill=np.nan, partial=False):
        """
        Gets a specific surface

        If `partial` is True a view of the data rather than a copy is returned.

        :param anatomy: BrainStructure or string like 'CortexLeft' or 'CortexRight'
        :param fill: which value to fill the array with if not all vertices are defined
        :param partial: only return the part of the surface defined in the greyordinate file (ignores `fill` if set)
        :return:
            - if not partial: (..., n_vertices) array
            - if partial: tuple with (N, ) int array with indices on the surface included in (..., N) array
        """
        if isinstance(anatomy, str):
            anatomy = BrainStructure.from_string(anatomy, issurface=True)
        if anatomy.cifti not in self.brain_model_axis.name:
            raise ValueError(f"No surface data for {anatomy.cifti} found")
        slc, bm = None, None
        arr = np.full(self.data.shape[:-1] + (self.brain_model_axis.nvertices[anatomy.cifti],), fill,
                      dtype=self.data.dtype)
        for name, slc_try, bm_try in self.brain_model_axis.iter_structures():
            if name == anatomy.cifti:
                if partial:
                    if bm is not None:
                        raise ValueError(f"Surface {anatomy} does not form a contiguous block")
                    slc, bm = slc_try, bm_try
                else:
                    arr[..., bm_try.vertex] = self.data[..., slc_try]
        if not partial:
            return arr
        else:
            return bm.vertex, self.data[..., slc]


class ParcelCifti(Cifti):
    """
    Represents sparse data defined at specific parcels
    """
    def __init__(self, *args, **kwargs):
        super().__init__(self, *args, **kwargs)
        if not isinstance(self.parcel_axis, cifti2_axes.BrainModelAxis):
            raise ValueError(f"ParcelCifti expects a ParcelsAxis as last axes object, not {type(self.parcel_axis)}")

    @property
    def extension(self, ):
        return parcel_extensions[type(self.axes[-2])]

    @property
    def parcel_axis(self, ) -> cifti2_axes.ParcelsAxis:
        return self.axes[-1]

    def to_image(self, fill=0):
        """
        Get the volumetric data as an :class:`Image`
        """
        data = np.full(self.parcel_axis.volume_shape + self.arr.shape[:-1], fill, dtype=self.arr.dtype)
        written = np.zeros(self.parcel_axis.volume_shape, dtype='bool')
        for idx, write_to in enumerate(self.parcel_axis).voxels:
            if written[write_to].any():
                raise ValueError("Duplicate voxels in different parcels")
            data[write_to] = self.arr[np.newaxis, ..., idx]
            written[write_to] = True
        if not written.any():
            raise ValueError("Parcellation does not contain any volumetric data")
        return Image(data, xform=self.brain_model_axis.affine)

    def surface(self, anatomy, fill=np.nan, partial=False):
        """
        Gets a specific surface

        :param anatomy: BrainStructure or string like 'CortexLeft' or 'CortexRight'
        :param fill: which value to fill the array with if not all vertices are defined
        :param partial: only return the part of the surface defined in the greyordinate file (ignores `fill` if set)
        :return:
            - if not partial: (..., n_vertices) array
            - if partial: tuple with (N, ) int array with indices on the surface included in (..., N) array
        """
        if isinstance(anatomy, str):
            anatomy = BrainStructure.from_string(anatomy, issurface=True)
        if anatomy.cifti not in self.parcel_axis.nvertices:
            raise ValueError(f"No surface data for {anatomy.cifti} found")

        arr = np.full(self.data.shape[:-1] + (self.parcel_axis.nvertices[anatomy.cifti],), fill,
                      dtype=self.data.dtype)
        written = np.zeros(self.parcel_axis.nvertices[anatomy.cifti])
        for idx, vertices in enumerate(self.parcel_axis.vertices):
            if anatomy.cifti not in vertices:
                continue
            write_to = vertices[anatomy.cifti]
            if written[write_to].any():
                raise ValueError("Duplicate vertices in different parcels")
            arr[..., write_to] = self.arr[..., idx, np.newaxis]
            written[write_to] = True

        if not partial:
            return arr
        else:
            return np.where(written)[0], arr[..., written]


class BrainStructure(object):
    """Which brain structure does the parent object describe?

    Supports how brain structures are stored in both GIFTI and CIFTI files
    """
    def __init__(self, primary, secondary=None, hemisphere='both', geometry=None):
        """Creates a new brain structure

        :param primary: Name of the brain structure (e.g. cortex, thalamus)
        :param secondary: Further specification of which part of the brain structure is described (e.g. 'white' or
        'pial' for the cortex)
        :param hemisphere: which hemisphere is the brain structure in ('left', 'right', or 'both')
        :param geometry: does the parent object describe the 'volume' or the 'surface'
        """
        self.primary = primary.lower()
        self.secondary = None if secondary is None else secondary.lower()
        self.hemisphere = hemisphere.lower()
        if geometry not in (None, 'surface', 'volume'):
            raise ValueError(f"Invalid value for geometry: {geometry}")
        self.geometry = geometry

    def __eq__(self, other):
        """Two brain structures are equal if they could describe the same structure
        """
        if isinstance(other, str):
            other = self.from_string(other)
        match_primary = (self.primary == other.primary or self.primary == 'all' or other.primary == 'all' or
                         self.primary == other.geometry or self.geometry == other.primary)
        match_hemisphere = self.hemisphere == other.hemisphere
        match_secondary = (self.secondary is None or other.secondary is None or self.secondary == other.secondary)
        match_geometry = (self.geometry is None or other.geometry is None or self.geometry == other.geometry)
        return match_primary and match_hemisphere and match_secondary and match_geometry

    @property
    def gifti(self, ):
        """Returns the keywords needed to define the surface in the meta information of a GIFTI file
        """
        main = self.primary.capitalize() + ('' if self.hemisphere == 'both' else self.hemisphere.capitalize())
        res = {'AnatomicalStructurePrimary': main}
        if self.secondary is not None:
            res['AnatomicalStructureSecondary'] = self.secondary.capitalize()
        return res

    def __str__(self, ):
        """Returns a short description of the brain structure
        """
        if self.secondary is None:
            return self.primary.capitalize() + self.hemisphere.capitalize()
        else:
            return "%s%s(%s)" % (self.primary.capitalize(), self.hemisphere.capitalize(), self.secondary)

    @property
    def cifti(self, ):
        """Returns a description of the brain structure needed to define the surface in a CIFTI file
        """
        return 'CIFTI_STRUCTURE_' + self.primary.upper() + ('' if self.hemisphere == 'both' else ('_' + self.hemisphere.upper()))

    @classmethod
    def from_string(cls, value, issurface=None):
        """Parses a string to find out which brain structure is being described

        :param value: string to be parsed
        :param issurface: defines whether the object describes the volume or surface of the brain structure (default: surface if the brain structure is the cortex volume otherwise)
        """
        if '_' in value:
            items = [val.lower() for val in value.split('_')]
            if items[-1] in ['left', 'right', 'both']:
                hemisphere = items[-1]
                others = items[:-1]
            elif items[0] in ['left', 'right', 'both']:
                hemisphere = items[0]
                others = items[1:]
            else:
                hemisphere = 'both'
                others = items
            if others[0] in ['nifti', 'cifti', 'gifti']:
                others = others[2:]
            primary = '_'.join(others)
        else:
            low = value.lower()
            if 'left' == low[-4:]:
                hemisphere = 'left'
                primary = low[:-4]
            elif 'right' == low[-5:]:
                hemisphere = 'right'
                primary = low[:-5]
            elif 'both' == low[-4:]:
                hemisphere = 'both'
                primary = low[:-4]
            else:
                hemisphere = 'both'
                primary = low
        if issurface is None:
            issurface = primary == 'cortex'
        if primary == '':
            primary = 'all'
        return cls(primary, None, hemisphere, 'surface' if issurface else 'volume')

    @classmethod
    def from_gifti(cls, gifti_obj):
        """
        Extracts the brain structure from a GIFTI object
        """
        primary_str = 'AnatomicalStructurePrimary'
        secondary_str = 'AnatomicalStructureSecondary'
        primary = "unknown"
        secondary = None
        for meta in [gifti_obj] + gifti_obj.darrays:
            if primary_str in meta.meta.metadata:
                primary = meta.meta.metadata[primary_str]
            if secondary_str in meta.meta.metadata:
                secondary = meta.meta.metadata[secondary_str]
        anatomy = cls.from_string(primary, issurface=True)
        anatomy.secondary = None if secondary is None else secondary.lower()
        return anatomy