Something went wrong on our end
Forked from
FSL / fslpy
1870 commits behind the upstream repository.
-
Paul McCarthy authoredPaul McCarthy authored
featdesign.py 23.18 KiB
#!/usr/bin/env python
#
# featdesign.py - The FEATFSFDesign class, and a few other things.
#
# Author: Paul McCarthy <pauldmccarthy@gmail.com>
#
"""This module provides the :class:`FEATFSFDesign` class, which encapsulates
a FEAT design matrix.
The :class:`FEATFSFDesign` class is intended to be used to access the design
matrix for a FEAT analysis. The main reason for using the ``FEATFSFDesign``
class, instead of just using the design matrix loaded directly from the
``[analysis].feat/design.mat`` file, is because FEAT supports voxelwise EVs,
where the contents of the design matrix will differ for each voxel in the
analysis. For all voxelwise EVs (confound or otherwise), the design matrix (in
``design.mat``) contains a dummy column which contains the mean across all
voxels. The :meth:`FEATFSFDesign.getDesign` method will return an
appropriate design matrix for a specific voxel.
.. note:: Interaction EVs are not currently supported.
Explanatory variables in a FEAT design
--------------------------------------
A FEAT design matrix may contain the following types of explanatory variables:
- *Normal* EVs. This is simply a column in the design matrix, defined by the
user.
- *Temporal derivative* of normal EVs. A column in the design matrix
containing the derivative of a normal EV. The presence of a temporal
derivative EV for a given normal EV can be determined by the ``deriv_yn``
flag in the ``design.fsf`` file.
- *Basis function* EV. One or more columns derived from a normal EV. A normal
EV with the ``convolve`` value set to ``4``, ``5``, or ``6`` will be
followed by a set of basis function EVs (the number of additional EVs can
be determined by the ``basisfnum`` flag).
- *Voxelwise* EVs. An EV with different values for each voxel. An EV with the
``shape`` value set to ``9`` is a voxelwise EV. The voxel data will be
stored in a file in the FEAT directory called ``designVoxelwiseEVN.nii.gz``
(where ``N`` is the EV number, relative to the order in which the EVs were
set up by the user).
A FEAT design matrix will contain EVs of the above types, followed by the
following types of *confound* EVs:
- *Voxelwise confound* EVs. These are confound EVs with different values for
each voxel. If the design matrix contains confound EVs, two additional
files will be present in the FEAT directory, ``vef.dat`` and
``ven.dat``. The ``vef.dat`` file contains a list of comma separated file
names, which are paths to the confound images (these should be in the FEAT
directory, and called ``InputConfoundEVN.nii.gz``). ``ven.dat`` is a list
of comma separated integers, specifying the column number (starting from 1)
of each voxelwise confound EV in the final design matrix.
- *Motion parameter* EVs. The user can choose to add 6 or 24 motion
parameters as regressors to the design matrix. If the ``motionevs`` value
in ``design.fsf`` is set to ``1``, then 6 motion EVs are added; if
``motionevs`` is ``2``, then 24 motion EVs are added.
- *Confound* EVs. These are any other EVs added by the user.
Module contents
---------------
In addition to the :class:`FEATFSFDesign` class, this module contains a few
other functions and classes that may be useful to advanced users.
The :func:`loadDesignMat` function loads the ``design.mat`` file from a
FEAT directory, and returns it as a numpy array.
The following functions, defined in this module, will analyse a FEAT analysis
to determine the contents of its design matrix (these functions are called by
the :meth:`FEATFSFDesign.__init__` method, but may be called directly):
.. autosummary::
:nosignatures:
getFirstLevelEVs
getHigherLevelEVs
These functions return a list containing one instance of the following classes
for each column in the design matrix:
.. autosummary::
:nosignatures:
NormalEV
TemporalDerivativeEV
BasisFunctionEV
VoxelwiseEV
ConfoundEV
MotionParameterEV
VoxelwiseConfoundEV
"""
import logging
import collections
import os.path as op
import numpy as np
from . import image as fslimage
log = logging.getLogger(__name__)
class FSFError(Exception):
"""Exception raised by various things in this module, primarily when the
contents of the FEAT directory are not valid.
"""
pass
class FEATFSFDesign(object):
"""The ``FEATFSFDesign`` class encapsulates the design matrix from a FEAT
analysis. This class is intended to be used for FEAT analyses generated
with FSL 5.0.9 and newer.
"""
def __init__(self, featDir, settings=None, loadVoxelwiseEVs=True):
"""Create a ``FEATFSFDesign``.
:arg featDir: Path to the FEAT directory.
:arg settings: A dictionary containing the FEAT analysis
settings from its ``design.fsf``. If not
provided, is loaded via
:func:`.featanalysis.loadSettings`.
:arg loadVoxelwiseEVs: If ``True`` (the default), image files
for all voxelwise EVs are loaded. Otherwise
they are not loaded, and all calls to
meth:`getDesign` will contain the mean
data for any voxelwise EV columns.
"""
if settings is None:
from .featanalysis import loadSettings
settings = loadSettings(featDir)
# Get the design matrix, and some
# information about the analysis
designMatrix = loadDesignMat(op.join(featDir, 'design.mat'))
version = float(settings['version'])
level = int( settings['level'])
# Print a warning if we're
# using an old version of FEAT
if version < 6:
log.warning('Unsupported FEAT version: {}'.format(version))
# We need to parse the EVS a bit
# differently depending on whether
# this is a first level or higher
# level analysis.
if level == 1: getEVs = getFirstLevelEVs
else: getEVs = getHigherLevelEVs
self.__settings = collections.OrderedDict(settings.items())
self.__design = np.array(designMatrix)
self.__numEVs = self.__design.shape[1]
self.__evs = getEVs(featDir, self.__settings, self.__design)
if len(self.__evs) != self.__numEVs:
raise FSFError('Number of EVs does not match design.mat')
# Load the voxelwise images now,
# so they're ready to be used by
# the getDesign method.
for ev in self.__evs:
if not isinstance(ev, (VoxelwiseEV, VoxelwiseConfoundEV)):
continue
ev.image = None
# The path to some voxelwise
# EVs may not be present -
# see the VoxelwisEV class.
if loadVoxelwiseEVs and (ev.filename is not None):
ev.image = fslimage.Image(ev.filename)
def getEVs(self):
"""Returns a list containing the :class:`EV` instances that represent
each column of this ``FEATFSFDesign``.
"""
return list(self.__evs)
def getDesign(self, voxel=None):
"""Returns the design matrix for the specified voxel.
:arg voxel: A tuple containing the ``(x, y, z)`` voxel coordinates of
interest. If ``None`` (the default), or if this
``FEATFSFDesign`` was created with
``loadVoxelwiseEVs=False``, the design matrix is returned,
with any voxelwise EV columns containing the mean
voxelwise EV data.
"""
design = np.array(self.__design)
if voxel is None:
return design
x, y, z = voxel
for ev in self.__evs:
if not isinstance(ev, (VoxelwiseEV, VoxelwiseConfoundEV)):
continue
if ev.image is None:
log.warning('Voxel EV image missing '
'for ev {}'.format(ev.index))
continue
design[:, ev.index] = ev.image[x, y, z, :]
return design
class EV(object):
"""Class representing an explanatory variable in a FEAT design matrix.
``EV`` instances contain the following attributes:
========= ============================================================
``index`` Index of this ``EV`` (starting from 0) in the design matrix.
``title`` Name of this ``EV``.
========= ============================================================
"""
def __init__(self, index, title):
"""Create an ``EV``.
:arg index: Index (starting from 0) of this ``EV`` in the design
matrix.
:arg title: Name of this ``EV``.
"""
self.index = index
self.title = title
class NormalEV(EV):
"""Class representing a *normal* EV in a FEAT design matrix, i.e. one
which has been explicitly provided by the user.
``NormalEV`` instances contain the following attributes (in addition
to the :class:`EV` attributes):
============= ============================================================
``origIndex`` Index (starting from 0) of this ``NormalEV``, as it was when
the user set up the design matrix (i.e. not taking into
account temporal derivative or basis function EVs).
============= ============================================================
"""
def __init__(self, realIdx, origIdx, title):
"""Create a ``NormalEV``.
:arg realIdx: Index (starting from 0) of this ``NormalEV`` in the
design matrix.
:arg origIdx: Original index (starting from 0) of this ``NormalEV``.
:arg title: Name of this ``NormalEV``.
"""
EV.__init__(self, realIdx, title)
self.origIndex = origIdx
class TemporalDerivativeEV(NormalEV):
"""Class representing a temporal derivative EV, derived from a normal EV.
"""
pass
class BasisFunctionEV(NormalEV):
"""Class representing a basis function EV, derived from a normal EV. """
pass
class VoxelwiseEV(NormalEV):
"""Class representing an EV with different values for each voxel in the
analysis.
``VoxelwiseEV`` instances contain the following attributes (in addition
to the :class:`NormalEV` attributes):
============ ======================================================
``filename`` Path to the image file containing the data for this EV
============ ======================================================
.. note:: The file for voxelwise EVs in a higher level analysis are not
copied into the FEAT directory, so if the user has removed them,
or moved the .gfeat directory, the file path here will not be
valid. Therefore, a ``VoxelwiseEV`` will test to see if the
file exists, and will set the ``filename`` attribute to ``None``
it it does not exist.
"""
def __init__(self, realIdx, origIdx, title, filename):
"""Create a ``VoxelwiseEV``.
:arg realIdx: Index (starting from 0) of this ``VoxelwiseEV`` in the
design matrix.
:arg origIdx: Original index (starting from 0) of this
``VoxelwiseEV``.
:arg title: Name of this ``VoxelwiseEV``.
:arg filename: Path to the file containing the data for this
``VoxelwiseEV``.
"""
NormalEV.__init__(self, realIdx, origIdx, title)
if op.exists(filename):
self.filename = filename
else:
log.warning('Voxelwise EV file does not '
'exist: {}'.format(filename))
self.filename = None
class ConfoundEV(EV):
"""Class representing a confound EV.
``ConfoundEV`` instances contain the following attributes (in addition
to the :class:`EV` attributes):
============= ==========================================================
``confIndex`` Index of this ``ConfoundEV`` (starting from 0) in relation
to all other confound EVs.
============= ==========================================================
"""
def __init__(self, index, confIndex, title):
"""Create a ``ConfoundEV``.
:arg index: Index (starting from 0) of this ``ConfoundEV`` in the
design matrix.
:arg confIndex: Index (starting from 0) of this ``ConfoundEV`` in
relation to all other confound EVs.
:arg title: Name of this ``ConfoundEV``.
"""
EV.__init__(self, index, title)
self.confIndex = confIndex
class MotionParameterEV(EV):
"""Class representing a motion parameter EV.
``MotionParameterEV`` instances contain the following attributes (in
addition to the :class:`EV` attributes):
=============== ========================================================
``motionIndex`` Index of this ``MotionParameterEV`` (starting from 0) in
relation to all other motion parameter EVs.
=============== ========================================================
"""
def __init__(self, index, motionIndex, title):
"""Create a ``MotionParameterEV``.
:arg index: Index (starting from 0) of this ``MotionParameterEV``
in the design matrix.
:arg confIndex: Index (starting from 0) of this ``MotionParameterEV``
in relation to all other motion parameter EVs.
:arg title: Name of this ``MotionParameterEV``.
"""
EV.__init__(self, index, title)
self.motionIndex = motionIndex
class VoxelwiseConfoundEV(EV):
"""Class representing a voxelwise confound EV.
``VoxelwiseConfoundEV`` instances contain the following attributes (in
addition to the :class:`EV` attributes):
============ ==========================================================
``voxIndex`` Index of this ``VoxelwiseConfoundEV`` (starting from 0) in
relation to all other voxelwise confound EVs.
``filename`` Path to the image file containing the data for this EV
============ ==========================================================
"""
def __init__(self, index, voxIndex, title, filename):
"""Create a ``Voxelwise ConfoundEV``.
:arg index: Index (starting from 0) of this
``VoxelwiseConfoundEV`` in the design matrix.
:arg confIndex: Index (starting from 0) of this
``VoxelwiseConfoundEV`` in relation to all other
voxelwise confound EVs.
:arg title: Name of this ``VoxelwiseConfoundEV``.
"""
EV.__init__(self, index, title)
self.voxIndex = voxIndex
if op.exists(filename):
self.filename = filename
else:
log.warning('Voxelwise confound EV file does '
'not exist: {}'.format(filename))
self.filename = None
def getFirstLevelEVs(featDir, settings, designMat):
"""Derives the EVs for the given first level FEAT analysis.
:arg featDir: Path to the FEAT analysis.
:arg settings: A dictionary containing the FEAT analysis settings
from its ``design.fsf`` file (see
:func:`.featanalysis.loadSettings`).
:arg designMat: The FEAT design matrix (a numpy array - see
:func:`loadDesignMat`).
:returns: A list of :class:`EV` instances, one for each column in the
design matrix.
"""
evs = []
origEVs = int(settings['evs_orig'])
# First, we loop through the EVs that
# are explicitly defined in design.fsf.
# This includes
# - normal EVs
# - temporal derivative EVs
# - basis function EVs
# - voxelwise EVs
for origIdx in range(origEVs):
title = settings[ 'evtitle{}' .format(origIdx + 1)]
shape = int(settings[ 'shape{}' .format(origIdx + 1)])
convolve = int(settings[ 'convolve{}' .format(origIdx + 1)])
deriv = int(settings[ 'deriv_yn{}' .format(origIdx + 1)])
basis = int(settings.get('basisfnum{}'.format(origIdx + 1), -1))
# Normal EV. This is just a column
# in the design matrix, defined by
# the user.
if shape != 9:
evs.append(NormalEV(len(evs), origIdx, title))
# Voxelwise EV. This is a 'normal' EV
# defined by the user, with different
# values for each voxel. The voxelwise
# values should be contained in the
# feat directory, in an image called
# designVoxelwiseEVN, where N is the
# original EV index.
else:
# The addExt function will raise an
# error if the file does not exist.
filename = op.join(
featDir, 'designVoxelwiseEV{}'.format(origIdx + 1))
filename = fslimage.addExt(filename, True)
evs.append(VoxelwiseEV(len(evs), origIdx, title, filename))
# This EV has been convolved with a set of basis
# functions. A set of N additional EVs have been
# added to the design matrix, immediately after
# the EV, where N is specified by the basisfnumN
# parameter in design.fsf.
if convolve in (4, 5, 6):
if basis == -1:
raise FSFError('Number of EVs is not specified '
'for basis function EV')
for i in range(basis - 1):
evs.append(BasisFunctionEV(len(evs), origIdx, title))
# A temporal derivative EV has been
# added for this EV - in the design
# matrix, it is the column immediately
# after this EV.
if deriv == 1:
evs.append(TemporalDerivativeEV(len(evs), origIdx, title))
# In the design matrix, after all EVs which
# have been explicilty defined, the rest of
# the EVs in the design matrix are confounds,
# in the following order:
#
# 1. Voxelwise confounds
# 2. Motion parameters
# 3. Other confounds
# Any voxelwise confounds are specified
# in two plain text files - vef.dat
# contains a comma-separated list of
# files, and ven.dat contains the column
# index of this confound in the design
# matrix (1-indexed). If these files
# don't exist, then it means that there
# are no voxelwise confounds.
#
# n.b. Even though the indices into the
# final design matrix are stored in ven.dat,
# I'm just assuming that the voxelwise
# confound columns are immediately after
# the 'real' EVs procesed above, in the
# order defined in vef.dat.
voxConfFiles = op.join(featDir, 'vef.dat')
voxConfLocs = op.join(featDir, 'ven.dat')
if op.exists(voxConfFiles) and op.exists(voxConfLocs):
with open(voxConfFiles, 'rt') as vcff:
voxConfFiles = vcff.read()
with open(voxConfLocs, 'rt') as vclf:
voxConfLocs = vclf.read()
voxConfFiles = voxConfFiles.strip().split(',')
voxConfLocs = voxConfLocs .strip().split(',')
if len(voxConfFiles) != len(voxConfLocs):
raise FSFError('vef.dat does not match ven.dat')
# An error will be raised if any of
# the files in vef.dat do not exist,
# or if any of the indices in
# ven.dat are not integers.
voxConfFiles = [op.join(featDir, f) for f in voxConfFiles]
voxConfFiles = [fslimage.addExt(f, True) for f in voxConfFiles]
voxConfLocs = [int(i) for i in voxConfLocs]
# Check to see if my assumption
# above, about the voxelwise
# confound EV locations, holds
startIdx = len(evs) + 1
if voxConfLocs != list(range(startIdx, startIdx + len(voxConfFiles))):
raise FSFError('Unsupported voxelwise confound ordering '
'({} -> {})'.format(startIdx, voxConfLocs))
# Create the voxelwise confound EVs.
# We make a name for the EV from the
# file name.
for i, f in enumerate(voxConfFiles):
title = op.basename(fslimage.removeExt(f))
evs.append(VoxelwiseConfoundEV(len(evs), i, title, f))
# Have motion parameters been added
# as regressors to the design matrix?
motion = int(settings['motionevs'])
if motion == 1: numMotionEVs = 6
elif motion == 2: numMotionEVs = 24
else: numMotionEVs = 0
for i in range(numMotionEVs):
evs.append(MotionParameterEV(len(evs), i, 'motion'))
# Last step - any columns in the design
# matrix which have not yet been accounted
# for are other confounds, specified by
# the user with a text file.
numConfoundEVs = designMat.shape[1] - len(evs)
for i in range(numConfoundEVs):
evs.append(ConfoundEV(len(evs), i, 'confound'))
# Phew.
return evs
def getHigherLevelEVs(featDir, settings, designMat):
"""Derives the EVs for the given higher level FEAT analysis.
:arg featDir: Path to the FEAT analysis.
:arg settings: A dictionary containing the FEAT analysis settings
from its ``design.fsf`` file (see
:func:`.featanalysis.loadSettings`).
:arg designMat: The FEAT design matrix (a numpy array - see
:func:`loadDesignMat`).
:returns: A list of :class:`EV` instances, one for each column in the
design matrix.
"""
# TODO Maybe I can give the voxel EVs titles based on their
# file name, for higher level (here) and first level (above).
evs = []
# For a higher level analysis, there
# are only two types of EVs:
#
# - Normal EVs
# - Voxelwise EVs
#
# evs_orig is the number of normal EVs
# evs_vox is the number of voxelwise EVs
# evs_real is the total number of EVs
voxEVs = int(settings['evs_vox'])
origEVs = int(settings['evs_orig'])
realEVs = int(settings['evs_real'])
# Sanity check
if (origEVs + voxEVs != realEVs) or (realEVs != designMat.shape[1]):
raise FSFError('Invalid number of EVs in design.fsf')
# The normal EVs are specified in the same
# way as for a first level analysis
for origIdx in range(origEVs):
# All we need is the title
title = settings['evtitle{}'.format(origIdx + 1)]
evs.append(NormalEV(len(evs), origIdx, title))
# Only the input file is specified for
# voxelwise EVs. We can create a title
# for each voxelwise EV from its file
# name.
for origIdx in range(voxEVs):
filename = settings['evs_vox_{}'.format(origIdx + 1)]
title = op.basename(fslimage.removeExt(filename))
evs.append(VoxelwiseEV(len(evs), origIdx, title, filename))
return evs
def loadDesignMat(designmat):
"""Loads the specified design matrix.
Returns a ``numpy`` array containing the design matrix data, where the
first dimension corresponds to the data points, and the second to the EVs.
:arg designmat: Path to the ``design.mat`` file.
"""
log.debug('Loading FEAT design matrix from {}'.format(designmat))
matrix = np.loadtxt(designmat, comments='/', ndmin=2)
if matrix is None or matrix.size == 0 or len(matrix.shape) != 2:
raise FSFError('{} does not appear to be a '
'valid design.mat file'.format(designmat))
return matrix