Something went wrong on our end
Forked from
FSL / fslpy
1212 commits behind the upstream repository.
-
Paul McCarthy authored
used by the DisplacementField class.
Paul McCarthy authoredused by the DisplacementField class.
nonlinear.py 25.54 KiB
#!/usr/bin/env python
#
# nonlinear.py - Functions/classes for non-linear transformations.
#
# Author: Paul McCarthy <pauldmccarthy@gmail.com>
#
"""This module contains data structures and functions for working with
FNIRT-style nonlinear transformations.
The :class:`DisplacementField` and :class:`CoefficientField` can be used to
load and interact with FNIRT transformation images. The following utility
functions are also available:
.. autosummary::
:nosignatures:
detectDisplacementType
convertDisplacementType
convertDisplacementSpace
coefficientFieldToDisplacementField
"""
import logging
import itertools as it
import numpy as np
import fsl.utils.memoize as memoize
import fsl.data.image as fslimage
from . import affine
log = logging.getLogger(__name__)
class NonLinearTransform(fslimage.Image):
"""Class which represents a nonlinear transformation. This is just a base
class for the :class:`DisplacementField` and :class:`CoefficientField`
classes.
A nonlinear transformation is an :class:`.Image` which contains
some mapping between a source image coordinate system and a reference image
coordinate system.
In FSL, non-linear transformations are defined in terms of the reference
image coordinate system. At a given location in the reference image
space, the non-linear mapping at that location can be used to calculate
the corresponding location in the source image space. Therefore, these
non-linear transformation effectively encode a transformation *from* the
reference image *to* the source image.
A FNIRT nonlinear transformation often contains a *premat*, a global
affine transformation from the source space to the reference space, which
was calculated with FLIRT, and used as the starting point for the
non-linear optimisation performed by FNIRT.
This affine may be provided when creating a ``NonLinearTransform`` as the
``srcToRefMat`` argument to :meth:`__init__`, and is subsequently accessed
via the :meth:`srcToRefMat` attribute.
"""
def __init__(self,
image,
src,
ref,
srcSpace=None,
refSpace=None,
srcToRefMat=None,
**kwargs):
"""Create a ``NonLinearTransform``.
:arg image: A string containing the name of an image file to
load, or a :mod:`numpy` array, or a :mod:`nibabel`
image object.
:arg src: :class:`.Nifti` representing the source image.
:arg ref: :class:`.Nifti` representing the reference image.
:arg srcSpace: Coordinate system in the source image that this
``NonLinearTransform`` maps to. Defaults to
``'fsl'``.
:arg refSpace: Coordinate system in the reference image that this
``NonLinearTransform`` maps from. Defaults to
``'fsl'``.
:arg srcToRefMat: Optional initial global affine transformation from
the source image to the reference image. This is
assumed to be a FLIRT-style matrix, i.e. it
transforms from source image ``srcSpace`` coordinates
into reference image ``srcSpace`` coordinates
(typically ``'fsl'`` coordinates, i.e. scaled voxels
potentially with a left-right flip).
All other arguments are passed through to :meth:`.Image.__init__`.
"""
if srcSpace is None: srcSpace = 'fsl'
if refSpace is None: refSpace = 'fsl'
if srcToRefMat is not None: srcToRefMat = np.copy(srcToRefMat)
if srcSpace not in ('fsl', 'voxel', 'world') or \
refSpace not in ('fsl', 'voxel', 'world'):
raise ValueError('Invalid source/reference space: {} -> {}'.format(
srcSpace, refSpace))
fslimage.Image.__init__(self, image, **kwargs)
self.__src = fslimage.Nifti(src.header.copy())
self.__ref = fslimage.Nifti(ref.header.copy())
self.__srcSpace = srcSpace
self.__refSpace = refSpace
self.__srcToRefMat = srcToRefMat
self.__refToSrcMat = None
if srcToRefMat is not None:
self.__refToSrcMat = affine.invert(srcToRefMat)
@property
def src(self):
"""Return a reference to the :class:`.Nifti` instance representing
the source image.
"""
return self.__src
@property
def ref(self):
"""Return a reference to the :class:`.Nifti` instance representing
the reference image.
"""
return self.__ref
@property
def srcSpace(self):
"""Return the source image coordinate system this
``NonLinearTransform`` maps from - see :meth:`.Nifti.getAffine`.
"""
return self.__srcSpace
@property
def refSpace(self):
"""Return the reference image coordinate system this
``NonLinearTransform`` maps to - see :meth:`.Nifti.getAffine`.
"""
return self.__refSpace
@property
def srcToRefMat(self):
"""Return the initial source-to-reference affine, or ``None`` if
there isn't one.
"""
return self.__srcToRefMat
@property
def refToSrcMat(self):
"""Return the inverse of the initial source-to-reference affine, or
``None`` if there isn't one.
"""
return self.__refToSrcMat
def transform(self, coords, from_=None, to=None):
"""Transform coordinates from the reference image space to the source
image space. Implemented by sub-classes.
:arg coords: A sequence of XYZ coordinates, or ``numpy`` array of shape
``(n, 3)`` containing ``n`` sets of coordinates in the
reference space.
:arg from_: Reference image space that ``coords`` are defined in
:arg to: Source image space to transform ``coords`` into
:returns: ``coords``, transformed into the source image space
"""
raise NotImplementedError()
class DisplacementField(NonLinearTransform):
"""Class which represents a displacement field which, at each voxel,
contains an absolute or relative displacement between a source space and a
reference space.
"""
def __init__(self, image, src, ref=None, **kwargs):
"""Create a ``DisplacementField``.
:arg ref: Optional. If not provided, it is assumed that the
reference is defined in the same space as ``image``.
:arg dispType: Either ``'absolute'`` or ``'relative'``, indicating
the type of this displacement field. If not provided,
will be inferred via the :func:`detectDisplacementType`
function.
All other arguments are passed through to
:meth:`NonLinearTransform.__init__`.
"""
if ref is None:
ref = self
dispType = kwargs.pop('dispType', None)
if dispType not in (None, 'relative', 'absolute'):
raise ValueError('Invalid value for dispType: {}'.format(dispType))
NonLinearTransform.__init__(self, image, src, ref, **kwargs)
if not self.sameSpace(self.ref):
raise ValueError('Invalid reference image: {}'.format(self.ref))
self.__dispType = dispType
@property
def displacementType(self):
"""The type of this ``DisplacementField`` - ``'absolute'`` or
``'relative'``.
"""
if self.__dispType is None:
self.__dispType = detectDisplacementType(self)
return self.__dispType
@property
def absolute(self):
"""``True`` if this ``DisplacementField`` contains absolute
displacements.
"""
return self.displacementType == 'absolute'
@property
def relative(self):
"""``True`` if this ``DisplacementField`` contains relative
displacements.
"""
return self.displacementType == 'relative'
def transform(self, coords, from_=None, to=None):
"""Transform the given XYZ coordinates from the reference image space
to the source image space.
:arg coords: A sequence of XYZ coordinates, or ``numpy`` array of shape
``(n, 3)`` containing ``n`` sets of coordinates in the
reference space.
:arg from_: Reference image space that ``coords`` are defined in
:arg to: Source image space to transform ``coords`` into
:returns: ``coords``, transformed into the source image space
"""
if from_ is None: from_ = self.refSpace
if to is None: to = self.srcSpace
coords = np.asanyarray(coords)
# We may need to pre-transform the
# coordinates so they are in the
# same reference image space as the
# displacements
if from_ != self.refSpace:
xform = self.ref.getAffine(from_, self.refSpace)
coords = affine.transform(coords, xform)
# We also need to make sure that the
# coordinates are in voxels, so we
# can look up the displacements
if self.refSpace != 'voxel':
xform = self.ref.getAffine(self.refSpace, 'voxel')
voxels = affine.transform(coords, xform)
else:
voxels = coords
# Mask out the coordinates
# that are out of bounds
voxels = np.round(voxels).astype(np.int)
voxmask = (voxels >= [0, 0, 0]) & (voxels < self.shape[:3])
voxmask = voxmask.all(axis=1)
voxels = voxels[voxmask]
xs, ys, zs = voxels.T
if self.absolute: disps = self.data[xs, ys, zs, :]
else: disps = self.data[xs, ys, zs, :] + coords[voxmask]
# Make sure the coordinates are
# in the requested source image
# space, and apply the initial
# inv(srcToRefMat) if it there
# is one
postmat = self.refToSrcMat
if to != self.srcSpace:
xform = self.src.getAffine(self.srcSpace, to)
if postmat is not None: postmat = affine.concat(xform, postmat)
else: postmat = xform
if postmat is not None:
disps = affine.transform(disps, xform)
# Nans for input coordinates
# which were outside of the
# field
outcoords = np.full(coords.shape, np.nan)
outcoords[voxmask] = disps
return outcoords
class CoefficientField(NonLinearTransform):
"""Class which represents a cubic B-spline coefficient field generated by
FNIRT.
The :meth:`displacements` method can be used to calculate relative
displacements for a set of reference space voxel coordinates.
"""
def __init__(self,
image,
src,
ref,
srcSpace,
refSpace,
fieldType,
knotSpacing,
fieldToRefMat,
**kwargs):
"""Create a ``CoefficientField``.
:arg fieldType: Must be ``'cubic'``
:arg knotSpacing: A tuple containing the spline knot spacings along
each axis.
:arg fieldToRefMat: Affine transformation which can transform reference
image voxel coordinates into coefficient field
voxel coordinates.
See the :class:`NonLinearTransform` class for details on the other
arguments.
"""
if fieldType not in ('cubic',):
raise ValueError('Unsupported field type: {}'.format(fieldType))
NonLinearTransform.__init__(self,
image,
src,
ref,
srcSpace,
refSpace,
**kwargs)
self.__fieldType = fieldType
self.__knotSpacing = tuple(knotSpacing)
self.__fieldToRefMat = np.copy(fieldToRefMat)
self.__refToFieldMat = affine.invert(self.__fieldToRefMat)
@property
def fieldType(self):
"""Return the type of the coefficient field, currently always
``'cubic'``.
"""
return self.__fieldType
@property
def knotSpacing(self):
"""Return a tuple containing spline knot spacings along the x, y, and
z axes.
"""
return self.__knotSpacing
@property
def fieldToRefMat(self):
"""Return an affine transformation which can transform coefficient
field voxel coordinates into reference image voxel coordinates.
"""
return np.copy(self.__fieldToRefMat)
@property
def refToFieldMat(self):
"""Return an affine transformation which can transform reference
image voxel coordinates into coefficient field voxel coordinates.
"""
return np.copy(self.__refToFieldMat)
@memoize.Instanceify(memoize.memoize)
def asDisplacementField(self, dispType='relative', premat=True):
"""Convert this ``CoefficientField`` to a :class:`DisplacementField`.
"""
return coefficientFieldToDisplacementField(self, dispType, premat)
def transform(self, coords, from_=None, to=None, premat=True):
"""Overrides :meth:`NonLinearTransform.transform`. Transforms the
given ``coords`` from the reference image space into the source image
space.
:arg coords: A sequence of XYZ coordinates, or ``numpy`` array of shape
``(n, 3)`` containing ``n`` sets of coordinates in the
reference space.
:arg from_: Reference image space that ``coords`` are defined in
:arg to: Source image space to transform ``coords`` into
:arg premat: If ``True``, the inverse :meth:`srcToRefMat` is applied
to the coordinates after the displacements have been
addd.
:returns: ``coords``, transformed into the source image space
"""
df = self.asDisplacementField(premat=premat)
return df.transform(coords, from_, to)
def displacements(self, coords):
"""Calculate the relative displacemenets for the given coordinates.
:arg coords: ``(N, 3)`` array of reference image voxel coordinates.
:return: A ``(N, 3)`` array of relative displacements to the
source image for ``coords``
"""
if self.fieldType != 'cubic':
raise NotImplementedError()
# See
# https://www.cs.jhu.edu/~cis/cista/746/papers/\
# RueckertFreeFormBreastMRI.pdf
# https://www.fmrib.ox.ac.uk/datasets/techrep/tr07ja2/tr07ja2.pdf
# Cubic b-spline basis functions
def b0(u):
return ((1 - u) ** 3) / 6
def b1(u):
return (3 * (u ** 3) - 6 * (u ** 2) + 4) / 6
def b2(u):
return (-3 * (u ** 3) + 3 * (u ** 2) + 3 * u + 1) / 6
def b3(u):
return (u ** 3) / 6
b = [b0, b1, b2, b3]
fdata = self.data
nx, ny, nz = self.shape[:3]
ix, iy, iz = self.ref.shape[:3]
# Convert the given voxel coordinates
# into the corresponding coefficient
# field voxel coordinates
x, y, z = coords.T
i, j, k = affine.transform(coords, self.refToFieldMat).T
# i, j, k: coefficient field indices
# u, v, w: position of the ref voxel
# on the current spline
u = np.remainder(i, 1)
v = np.remainder(j, 1)
w = np.remainder(k, 1)
i = np.floor(i).astype(np.int)
j = np.floor(j).astype(np.int)
k = np.floor(k).astype(np.int)
disps = np.zeros(coords.shape)
for l, m, n in it.product(range(4), range(4), range(4)):
il = i + l
jm = j + m
kn = k + n
mask = (il >= 0) & \
(il < nx) & \
(jm >= 0) & \
(jm < ny) & \
(kn >= 0) & \
(kn < nz)
il = il[mask]
jm = jm[mask]
kn = kn[mask]
uu = u[ mask]
vv = v[ mask]
ww = w[ mask]
cx, cy, cz = fdata[il, jm, kn, :].T
c = b[l](uu) * b[m](vv) * b[n](ww)
disps[mask, 0] += c * cx
disps[mask, 1] += c * cy
disps[mask, 2] += c * cz
return disps
def detectDisplacementType(field):
"""Attempt to automatically determine whether a displacement field is
specified in absolute or relative coordinates.
:arg field: A :class:`DisplacementField`
:returns: ``'absolute'`` if it looks like ``field`` contains absolute
displacements, ``'relative'`` otherwise.
"""
# This test is based on the assumption
# that a displacement field containing
# absolute coordinates will have a
# greater standard deviation than one
# which contains relative coordinates.
absdata = field[:]
reldata = convertDisplacementType(field, 'relative')
stdabs = absdata.std(axis=(0, 1, 2)).sum()
stdrel = reldata.std(axis=(0, 1, 2)).sum()
if stdabs > stdrel: return 'absolute'
else: return 'relative'
def convertDisplacementType(field, dispType=None):
"""Convert a displacement field between storing absolute and relative
displacements.
:arg field: A :class:`DisplacementField` instance
:arg dispType: Either ``'absolute'`` or ``'relative'``. If not provided,
the opposite type to ``field.displacementType`` is used.
:returns: A ``numpy.array`` containing the adjusted displacement
field.
"""
if dispType is None:
if field.displacementType == 'absolute': dispType = 'relative'
else: dispType = 'absolute'
# Regardless of the conversion direction,
# we need the coordinates of every voxel
# in the reference FSL coordinate system.
dx, dy, dz = field.shape[:3]
xform = field.getAffine('voxel', field.refSpace)
coords = np.meshgrid(np.arange(dx),
np.arange(dy),
np.arange(dz), indexing='ij')
coords = np.array(coords).transpose((1, 2, 3, 0))
coords = affine.transform(coords.reshape((-1, 3)), xform)
coords = coords.reshape((dx, dy, dz, 3))
# If converting from relative to absolute,
# we just add the voxel coordinates to
# (what is assumed to be) the relative shift.
# Or, to convert from absolute to relative,
# we subtract the reference image voxels.
if dispType == 'absolute': return field.data + coords
elif dispType == 'relative': return field.data - coords
def convertDisplacementSpace(field, from_, to):
"""Adjust the source and/or reference spaces of the given displacement
field. See the :meth:`.Nifti.getAffine` method for the valid values for
the ``from_`` and ``to`` arguments.
:arg field: A :class:`DisplacementField` instance
:arg from_: New reference image coordinate system
:arg to: New source image coordinate system
:returns: A new :class:`DisplacementField` which transforms between
the reference ``from_`` coordinate system and the source ``to``
coordinate system.
"""
# Get the field in absolute coordinates
# if necessary - these are our source
# coordinates in the original "to" space.
fieldcoords = field.data
if field.relative: srccoords = convertDisplacementType(field)
else: srccoords = fieldcoords
srccoords = srccoords.reshape((-1, 3))
# Now transform those source coordinates
# from the original source space to the
# source space specified by "to"
if to != field.srcSpace:
srcmat = field.src.getAffine(field.srcSpace, to)
srccoords = affine.transform(srccoords, srcmat)
# If we have been asked to return
# an absolute displacement, the
# reference "from_" coordinate
# system is irrelevant - we're done.
if field.absolute:
fieldcoords = srccoords
# Otherwise our displacement field
# will contain relative displacements
# between the reference image "from_"
# coordinate system and the source
# image "to" coordinate system. We
# need to re-calculate the relative
# displacements between the new
# reference "from_" space and source
# "to" space.
else:
refcoords = np.meshgrid(np.arange(field.shape[0]),
np.arange(field.shape[1]),
np.arange(field.shape[2]), indexing='ij')
refcoords = np.array(refcoords)
refcoords = refcoords.transpose((1, 2, 3, 0)).reshape((-1, 3))
if from_ != 'voxel':
refmat = field.ref.getAffine('voxel', from_)
refcoords = affine.transform(refcoords, refmat)
fieldcoords = srccoords - refcoords
return DisplacementField(
fieldcoords.reshape(field.shape),
header=field.header,
src=field.src,
ref=field.ref,
srcSpace=to,
refSpace=from_,
dispType=field.displacementType)
def coefficientFieldToDisplacementField(field,
dispType='relative',
premat=True):
"""Convert a :class:`CoefficientField` into a :class:`DisplacementField`.
:arg field: :class:`CoefficientField` to convert
:arg dispType: The type of displacement field - either ``'relative'`` (the
default) or ``'absolute'``.
:arg premat: If ``True`` (the default), the :meth:`srcToRefMat` is
encoded into the displacements.
:return: :class:`DisplacementField` calculated from ``field``.
"""
# Generate coordinates for every
# voxel in the reference image
ix, iy, iz = field.ref.shape[:3]
x, y, z = np.meshgrid(np.arange(ix),
np.arange(iy),
np.arange(iz), indexing='ij')
x = x.flatten()
y = y.flatten()
z = z.flatten()
xyz = np.vstack((x, y, z)).T
# There are three spaces to consider here:
#
# - ref space: Reference image scaled voxels ("fsl" space)
#
# - aligned-src space: Source image scaled voxels, after the
# source image has been linearly aligned to
# the reference via the field.srcToRefMat
# This will typically be equivalent to ref
# space
#
# - orig-src space: Source image scaled voxels, in the coordinate
# system of the original source image, without
# linear alignment to the reference image
# The displacements method will
# return relative displacements
# from ref space to aligned-src
# space.
disps = field.displacements(xyz).reshape((ix, iy, iz, 3))
rdfield = DisplacementField(disps,
src=field.src,
ref=field.ref,
srcSpace=field.srcSpace,
refSpace=field.refSpace,
header=field.ref.header,
dispType='relative')
if (dispType == 'relative') and (not premat):
return rdfield
# Convert to absolute - the
# displacements will now be
# absolute coordinates in
# aligned-src space
disps = convertDisplacementType(rdfield)
# Apply the premat if requested -
# this will transform the coordinates
# from aligned-src to orig-src space.
if premat and field.srcToRefMat is not None:
# We apply the premat in the same way
# that fnirtfileutils does - applying
# the inverse affine to every ref space
# voxel coordinate, then adding it to
# the existing displacements.
shape = disps.shape
disps = disps.reshape(-1, 3)
premat = affine.concat(field.refToSrcMat - np.eye(4),
field.ref.getAffine('voxel', 'fsl'))
disps = disps + affine.transform(xyz, premat)
disps = disps.reshape(shape)
# note that convertwarp applies a premat
# differently - its method is equivalent
# to directly transforming the existing
# absolute displacements, i.e.:
#
# disps = affine.transform(disps, refToSrc)
adfield = DisplacementField(disps,
src=field.src,
ref=field.ref,
srcSpace=field.srcSpace,
refSpace=field.refSpace,
header=field.ref.header,
dispType='absolute')
# Not either return absolute displacements,
# or convert back to relative displacements
if dispType == 'absolute':
return adfield
else:
return DisplacementField(convertDisplacementType(adfield),
src=field.src,
ref=field.ref,
srcSpace=field.srcSpace,
refSpace=field.refSpace,
header=field.ref.header,
dispType='relative')