Skip to content
Snippets Groups Projects
Commit 7f11fabf authored by Paul McCarthy's avatar Paul McCarthy :mountain_bicyclist:
Browse files

TEST: deprecated import

parent 0ccdcdaa
No related branches found
No related tags found
No related merge requests found
......@@ -9,13 +9,13 @@ import pytest
import scipy.ndimage as ndimage
import fsl.data.image as fslimage
import fsl.utils.transform as transform
import fsl.transform.affine as affine
import fsl.utils.image.resample as resample
from . import make_random_image
def random_affine():
return transform.compose(
return affine.compose(
0.25 + 4.75 * np.random.random(3),
-50 + 100 * np.random.random(3),
-np.pi + 2 * np.pi * np.random.random(3))
......@@ -61,9 +61,9 @@ def test_resample(seed):
resx, resy, resz = restestcoords.T
resvals = resampled[resx, resy, resz]
res2orig = transform.concat(img.worldToVoxMat, xf)
res2orig = affine.concat(img.worldToVoxMat, xf)
origtestcoords = transform.transform(restestcoords, res2orig)
origtestcoords = affine.transform(restestcoords, res2orig)
# remove any coordinates which are out of
# bounds in the original image space, or
......@@ -130,8 +130,8 @@ def test_resample_origin(seed):
shape = np.random.randint(5, 50, 3)
res = resample.resample(img, shape, origin='corner')
res = fslimage.Image(res[0], xform=res[1])
imgb = transform.axisBounds(img.shape, img.voxToWorldMat)
resb = transform.axisBounds(res.shape, res.voxToWorldMat)
imgb = affine.axisBounds(img.shape, img.voxToWorldMat)
resb = affine.axisBounds(res.shape, res.voxToWorldMat)
assert np.all(np.isclose(imgb, resb, rtol=1e-5, atol=1e-5))
# with origin='centre' image
......@@ -142,8 +142,8 @@ def test_resample_origin(seed):
res = resample.resample(img, shape, origin='centre')
res = fslimage.Image(res[0], xform=res[1])
off = (np.array(img.shape) / np.array(res.shape) - 1) / 2
imgb = np.array(transform.axisBounds(img.shape, img.voxToWorldMat))
resb = np.array(transform.axisBounds(res.shape, res.voxToWorldMat))
imgb = np.array(affine.axisBounds(img.shape, img.voxToWorldMat))
resb = np.array(affine.axisBounds(res.shape, res.voxToWorldMat))
assert np.all(np.isclose(imgb, resb + off, rtol=1e-5, atol=1e-5))
# with origin='corner', using
......@@ -165,7 +165,7 @@ def test_resample_origin(seed):
def test_resampleToPixdims():
img = fslimage.Image(make_random_image(dims=(10, 10, 10)))
imglo, imghi = transform.axisBounds(img.shape, img.voxToWorldMat)
imglo, imghi = affine.axisBounds(img.shape, img.voxToWorldMat)
oldpix = np.array(img.pixdim, dtype=np.float)
oldshape = np.array(img.shape, dtype=np.float)
......@@ -177,7 +177,7 @@ def test_resampleToPixdims():
res = resample.resampleToPixdims(img, newpix, origin=origin)
res = fslimage.Image(res[0], xform=res[1])
reslo, reshi = transform.axisBounds(res.shape, res.voxToWorldMat)
reslo, reshi = affine.axisBounds(res.shape, res.voxToWorldMat)
resfov = reshi - reslo
expfov = newpix * res.shape
......@@ -219,7 +219,7 @@ def test_resampleToReference2():
img[1, 1, 1] = 1
img = fslimage.Image(img)
refv2w = transform.scaleOffsetXform([1, 1, 1], [-1, -1, -1])
refv2w = affine.scaleOffsetXform([1, 1, 1], [-1, -1, -1])
ref = np.zeros((5, 5, 5), dtype=np.float)
ref = fslimage.Image(ref, xform=refv2w)
res = resample.resampleToReference(img, ref, order=0)
......@@ -235,7 +235,7 @@ def test_resampleToReference3():
# Test resampling image to ref
# with mismatched dimensions
imgdata = np.random.randint(0, 65536, (5, 5, 5))
img = fslimage.Image(imgdata, xform=transform.scaleOffsetXform(
img = fslimage.Image(imgdata, xform=affine.scaleOffsetXform(
(2, 2, 2), (0.5, 0.5, 0.5)))
# reference/expected data when
......@@ -270,7 +270,7 @@ def test_resampleToReference4():
# the image and ref are out of
# alignment, but this affine
# will bring them into alignment
img2ref = transform.scaleOffsetXform([2, 2, 2], [10, 10, 10])
img2ref = affine.scaleOffsetXform([2, 2, 2], [10, 10, 10])
imgdata = np.random.randint(0, 65536, (5, 5, 5))
refdata = np.zeros((5, 5, 5))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment