Skip to content
Snippets Groups Projects
07_threading.ipynb 19.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Threading and parallel processing\n",
    "\n",
    "\n",
    "The Python language has built-in support for multi-threading in the\n",
    "[`threading`](https://docs.python.org/3.5/library/threading.html) module, and\n",
    "true parallelism in the\n",
    "[`multiprocessing`](https://docs.python.org/3.5/library/multiprocessing.html)\n",
    "module.  If you want to be impressed, skip straight to the section on\n",
    "[`multiprocessing`](todo).\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "## Threading\n",
    "\n",
    "\n",
    "The [`threading`](https://docs.python.org/3.5/library/threading.html) module\n",
    "provides a traditional multi-threading API that should be familiar to you if\n",
    "you have worked with threads in other languages.\n",
    "\n",
    "\n",
    "Running a task in a separate thread in Python is easy - simply create a\n",
    "`Thread` object, and pass it the function or method that you want it to\n",
    "run. Then call its `start` method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import time\n",
    "import threading\n",
    "\n",
    "def longRunningTask(niters):\n",
    "    for i in range(niters):\n",
    "        if i % 2 == 0: print('Tick')\n",
    "        else:          print('Tock')\n",
    "        time.sleep(0.5)\n",
    "\n",
    "t = threading.Thread(target=longRunningTask, args=(8,))\n",
    "\n",
    "t.start()\n",
    "\n",
    "while t.is_alive():\n",
    "    time.sleep(0.4)\n",
    "    print('Waiting for thread to finish...')\n",
    "print('Finished!')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also `join` a thread, which will block execution in the current thread\n",
    "until the thread that has been `join`ed has finished:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "t = threading.Thread(target=longRunningTask, args=(6, ))\n",
    "t.start()\n",
    "\n",
    "print('Joining thread ...')\n",
    "t.join()\n",
    "print('Finished!')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Subclassing `Thread`\n",
    "\n",
    "\n",
    "It is also possible to sub-class the `Thread` class, and override its `run`\n",
    "method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "class LongRunningThread(threading.Thread):\n",
    "    def __init__(self, niters, *args, **kwargs):\n",
    "        super().__init__(*args, **kwargs)\n",
    "        self.niters = niters\n",
    "\n",
    "    def run(self):\n",
    "        for i in range(self.niters):\n",
    "            if i % 2 == 0: print('Tick')\n",
    "            else:          print('Tock')\n",
    "            time.sleep(0.5)\n",
    "\n",
    "t = LongRunningThread(6)\n",
    "t.start()\n",
    "t.join()\n",
    "print('Done')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Daemon threads\n",
    "\n",
    "\n",
    "By default, a Python application will not exit until _all_ active threads have\n",
    "finished execution.  If you want to run a task in the background for the\n",
    "duration of your application, you can mark it as a `daemon` thread - when all\n",
    "non-daemon threads in a Python application have finished, all daemon threads\n",
    "will be halted, and the application will exit.\n",
    "\n",
    "\n",
    "You can mark a thread as being a daemon by setting an attribute on it after\n",
    "creation:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "t = threading.Thread(target=longRunningTask)\n",
    "t.daemon = True"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "See the [`Thread`\n",
    "documentation](https://docs.python.org/3.5/library/threading.html#thread-objects)\n",
    "for more details.\n",
    "\n",
    "\n",
    "### Thread synchronisation\n",
    "\n",
    "\n",
    "The `threading` module provides some useful thread-synchronisation primitives\n",
    "- the `Lock`, `RLock` (re-entrant `Lock`), and `Event` classes.  The\n",
    "`threading` module also provides `Condition` and `Semaphore` classes - refer\n",
    "to the [documentation](https://docs.python.org/3.5/library/threading.html) for\n",
    "more details.\n",
    "\n",
    "\n",
    "#### `Lock`\n",
    "\n",
    "\n",
    "The [`Lock`](https://docs.python.org/3.5/library/threading.html#lock-objects)\n",
    "class (and its re-entrant version, the\n",
    "[`RLock`](https://docs.python.org/3.5/library/threading.html#rlock-objects))\n",
    "prevents a block of code from being accessed by more than one thread at a\n",
    "time. For example, if we have multiple threads running this `task` function,\n",
    "their [outputs](https://www.youtube.com/watch?v=F5fUFnfPpYU) will inevitably\n",
    "become intertwined:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def task():\n",
    "    for i in range(5):\n",
    "        print('{} Woozle '.format(i), end='')\n",
    "        time.sleep(0.1)\n",
    "        print('Wuzzle')\n",
    "\n",
    "threads = [threading.Thread(target=task) for i in range(5)]\n",
    "for t in threads:\n",
    "    t.start()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But if we protect the critical section with a `Lock` object, the output will\n",
    "look more sensible:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "lock = threading.Lock()\n",
    "\n",
    "def task():\n",
    "\n",
    "    for i in range(5):\n",
    "        with lock:\n",
    "            print('{} Woozle '.format(i), end='')\n",
    "            time.sleep(0.1)\n",
    "            print('Wuzzle')\n",
    "\n",
    "threads = [threading.Thread(target=task) for i in range(5)]\n",
    "for t in threads:\n",
    "    t.start()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> Instead of using a `Lock` object in a `with` statement, it is also possible\n",
    "> to manually call its `acquire` and `release` methods:\n",
    ">\n",
    ">     def task():\n",
    ">         for i in range(5):\n",
    ">             lock.acquire()\n",
    ">             print('{} Woozle '.format(i), end='')\n",
    ">             time.sleep(0.1)\n",
    ">             print('Wuzzle')\n",
    ">             lock.release()\n",
    "\n",
    "\n",
    "Python does not have any built-in constructs to implement `Lock`-based mutual\n",
    "exclusion across several functions or methods - each function/method must\n",
    "explicitly acquire/release a shared `Lock` instance. However, it is relatively\n",
    "straightforward to implement a decorator which does this for you:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def mutex(func, lock):\n",
    "    def wrapper(*args):\n",
    "        with lock:\n",
    "            func(*args)\n",
    "    return wrapper\n",
    "\n",
    "class MyClass(object):\n",
    "\n",
    "    def __init__(self):\n",
    "        lock = threading.Lock()\n",
    "        self.safeFunc1 = mutex(self.safeFunc1, lock)\n",
    "        self.safeFunc2 = mutex(self.safeFunc2, lock)\n",
    "\n",
    "    def safeFunc1(self):\n",
    "        time.sleep(0.1)\n",
    "        print('safeFunc1 start')\n",
    "        time.sleep(0.2)\n",
    "        print('safeFunc1 end')\n",
    "\n",
    "    def safeFunc2(self):\n",
    "        time.sleep(0.1)\n",
    "        print('safeFunc2 start')\n",
    "        time.sleep(0.2)\n",
    "        print('safeFunc2 end')\n",
    "\n",
    "mc = MyClass()\n",
    "\n",
    "f1threads = [threading.Thread(target=mc.safeFunc1) for i in range(4)]\n",
    "f2threads = [threading.Thread(target=mc.safeFunc2) for i in range(4)]\n",
    "\n",
    "for t in f1threads + f2threads:\n",
    "    t.start()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Try removing the `mutex` lock from the two methods in the above code, and see\n",
    "what it does to the output.\n",
    "\n",
    "\n",
    "#### `Event`\n",
    "\n",
    "\n",
    "The\n",
    "[`Event`](https://docs.python.org/3.5/library/threading.html#event-objects)\n",
    "class is essentially a boolean [semaphore][semaphore-wiki]. It can be used to\n",
    "signal events between threads. Threads can `wait` on the event, and be awoken\n",
    "when the event is `set` by another thread:\n",
    "\n",
    "\n",
    "[semaphore-wiki]: https://en.wikipedia.org/wiki/Semaphore_(programming)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "processingFinished = threading.Event()\n",
    "\n",
    "def processData(data):\n",
    "    print('Processing data ...')\n",
    "    time.sleep(2)\n",
    "    print('Result: {}'.format(data.mean()))\n",
    "    processingFinished.set()\n",
    "\n",
    "data = np.random.randint(1, 100, 100)\n",
    "\n",
    "t = threading.Thread(target=processData, args=(data,))\n",
    "t.start()\n",
    "\n",
    "processingFinished.wait()\n",
    "print('Processing finished!')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### The Global Interpreter Lock (GIL)\n",
    "\n",
    "\n",
    "The [_Global Interpreter\n",
    "Lock_](https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock)\n",
    "is an implementation detail of [CPython](https://github.com/python/cpython)\n",
    "(the official Python interpreter).  The GIL means that a multi-threaded\n",
    "program written in pure Python is not able to take advantage of multiple\n",
    "cores - this essentially means that only one thread may be executing at any\n",
    "point in time.\n",
    "\n",
    "\n",
    "The `threading` module does still have its uses though, as this GIL problem\n",
    "does not affect tasks which involve calls to system or natively compiled\n",
    "libraries (e.g. file and network I/O, Numpy operations, etc.). So you can,\n",
    "for example, perform some expensive processing on a Numpy array in a thread\n",
    "running on one core, whilst having another thread (e.g. user interaction)\n",
    "running on another core.\n",
    "\n",
    "\n",
    "## Multiprocessing\n",
    "\n",
    "\n",
    "For true parallelism, you should check out the\n",
    "[`multiprocessing`](https://docs.python.org/3.5/library/multiprocessing.html)\n",
    "module.\n",
    "\n",
    "\n",
    "The `multiprocessing` module spawns sub-processes, rather than threads, and so\n",
    "is not subject to the GIL constraints that the `threading` module suffers\n",
    "from. It provides two APIs - a \"traditional\" equivalent to that provided by\n",
    "the `threading` module, and a powerful higher-level API.\n",
    "\n",
    "\n",
    "### `threading`-equivalent API\n",
    "\n",
    "\n",
    "The\n",
    "[`Process`](https://docs.python.org/3.5/library/multiprocessing.html#the-process-class)\n",
    "class is the `multiprocessing` equivalent of the\n",
    "[`threading.Thread`](https://docs.python.org/3.5/library/threading.html#thread-objects)\n",
    "class.  `multprocessing` also has equivalents of the [`Lock` and `Event`\n",
    "classes](https://docs.python.org/3.5/library/multiprocessing.html#synchronization-between-processes),\n",
    "and the other synchronisation primitives provided by `threading`.\n",
    "\n",
    "\n",
    "So you can simply replace `threading.Thread` with `multiprocessing.Process`,\n",
    "and you will have true parallelism.\n",
    "\n",
    "\n",
    "Because your \"threads\" are now independent processes, you need to be a little\n",
    "careful about how to share information across them. Fortunately, the\n",
    "`multiprocessing` module provides [`Queue` and `Pipe`\n",
    "classes](https://docs.python.org/3.5/library/multiprocessing.html#exchanging-objects-between-processes)\n",
    "which make it easy to share data across processes.\n",
    "\n",
    "\n",
    "### Higher-level API - the `multiprocessing.Pool`\n",
    "\n",
    "\n",
    "The real advantages of `multiprocessing` lie in its higher level API, centered\n",
    "around the [`Pool`\n",
    "class](https://docs.python.org/3.5/library/multiprocessing.html#using-a-pool-of-workers).\n",
    "\n",
    "\n",
    "Essentially, you create a `Pool` of worker processes - you specify the number\n",
    "of processes when you create the pool.\n",
    "\n",
    "\n",
    "> The best number of processes to use for a `Pool` will depend on the system\n",
    "> you are running on (number of cores), and the tasks you are running (e.g.\n",
    "> I/O bound or CPU bound).\n",
    "\n",
    "\n",
    "Once you have created a `Pool`, you can use its methods to automatically\n",
    "parallelise tasks. The most useful are the `map`, `starmap` and\n",
    "`apply_async` methods.\n",
    "\n",
    "\n",
    "#### `Pool.map`\n",
    "\n",
    "\n",
    "The\n",
    "[`Pool.map`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.map)\n",
    "method is the multiprocessing equivalent of the built-in\n",
    "[`map`](https://docs.python.org/3.5/library/functions.html#map) function - it\n",
    "is given a function, and a sequence, and it applies the function to each\n",
    "element in the sequence."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import                    time\n",
    "import multiprocessing as mp\n",
    "import numpy           as np\n",
    "\n",
    "def crunchImage(imgfile):\n",
    "\n",
    "    # Load a nifti image, do stuff\n",
    "    # to it. Use your imagination\n",
    "    # to fill in this function.\n",
    "    time.sleep(2)\n",
    "\n",
    "    # numpy's random number generator\n",
    "    # will be initialised in the same\n",
    "    # way in each process, so let's\n",
    "    # re-seed it.\n",
    "    np.random.seed()\n",
    "    result = np.random.randint(1, 100, 1)\n",
    "\n",
    "    print(imgfile, ':', result)\n",
    "\n",
    "    return result\n",
    "\n",
    "imgfiles = ['{:02d}.nii.gz'.format(i) for i in range(20)]\n",
    "\n",
    "p = mp.Pool(processes=16)\n",
    "\n",
    "print('Crunching images...')\n",
    "\n",
    "start   = time.time()\n",
    "results = p.map(crunchImage, imgfiles)\n",
    "end     = time.time()\n",
    "\n",
    "print('Total execution time: {:0.2f} seconds'.format(end - start))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `Pool.map` method only works with functions that accept one argument, such\n",
    "as our `crunchImage` function above. If you have a function which accepts\n",
    "multiple arguments, use the\n",
    "[`Pool.starmap`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.starmap)\n",
    "method instead:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def crunchImage(imgfile, modality):\n",
    "    time.sleep(2)\n",
    "\n",
    "    np.random.seed()\n",
    "\n",
    "    if modality == 't1':\n",
    "        result = np.random.randint(1, 100, 1)\n",
    "    elif modality == 't2':\n",
    "        result = np.random.randint(100, 200, 1)\n",
    "\n",
    "    print(imgfile, ': ', result)\n",
    "\n",
    "    return result\n",
    "\n",
    "imgfiles   = ['t1_{:02d}.nii.gz'.format(i) for i in range(10)] + \\\n",
    "             ['t2_{:02d}.nii.gz'.format(i) for i in range(10)]\n",
    "modalities = ['t1'] * 10 + ['t2'] * 10\n",
    "\n",
    "pool = mp.Pool(processes=16)\n",
    "\n",
    "args = [(f, m) for f, m in zip(imgfiles, modalities)]\n",
    "\n",
    "print('Crunching images...')\n",
    "\n",
    "start   = time.time()\n",
    "results = pool.starmap(crunchImage, args)\n",
    "end     = time.time()\n",
    "\n",
    "print('Total execution time: {:0.2f} seconds'.format(end - start))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `map` and `starmap` methods also have asynchronous equivalents `map_async`\n",
    "and `starmap_async`, which return immediately. Refer to the\n",
    "[`Pool`](https://docs.python.org/3.5/library/multiprocessing.html#module-multiprocessing.pool)\n",
    "documentation for more details.\n",
    "\n",
    "\n",
    "#### `Pool.apply_async`\n",
    "\n",
    "\n",
    "The\n",
    "[`Pool.apply`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.apply)\n",
    "method will execute a function on one of the processes, and block until it has\n",
    "finished.  The\n",
    "[`Pool.apply_async`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.apply_async)\n",
    "method returns immediately, and is thus more suited to asynchronously\n",
    "scheduling multiple jobs to run in parallel.\n",
    "\n",
    "\n",
    "`apply_async` returns an object of type\n",
    "[`AsyncResult`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.AsyncResult).\n",
    "An `AsyncResult` object has `wait` and `get` methods which will block until\n",
    "the job has completed."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import                    time\n",
    "import multiprocessing as mp\n",
    "import numpy           as np\n",
    "\n",
    "\n",
    "def linear_registration(src, ref):\n",
    "    time.sleep(1)\n",
    "\n",
    "    return np.eye(4)\n",
    "\n",
    "def nonlinear_registration(src, ref, affine):\n",
    "\n",
    "    time.sleep(3)\n",
    "\n",
    "    # this number represents a non-linear warp\n",
    "    # field - use your imagination people!\n",
    "    np.random.seed()\n",
    "    return np.random.randint(1, 100, 1)\n",
    "\n",
    "t1s = ['{:02d}_t1.nii.gz'.format(i) for i in range(20)]\n",
    "std = 'MNI152_T1_2mm.nii.gz'\n",
    "\n",
    "pool = mp.Pool(processes=16)\n",
    "\n",
    "print('Running structural-to-standard registration '\n",
    "      'on {} subjects...'.format(len(t1s)))\n",
    "\n",
    "# Run linear registration on all the T1s.\n",
    "#\n",
    "# We build a list of AsyncResult objects\n",
    "linresults = [pool.apply_async(linear_registration, (t1, std))\n",
    "              for t1 in t1s]\n",
    "\n",
    "# Then we wait for each job to finish,\n",
    "# and replace its AsyncResult object\n",
    "# with the actual result - an affine\n",
    "# transformation matrix.\n",
    "start = time.time()\n",
    "for i, r in enumerate(linresults):\n",
    "    linresults[i] = r.get()\n",
    "end = time.time()\n",
    "\n",
    "print('Linear registrations completed in '\n",
    "      '{:0.2f} seconds'.format(end - start))\n",
    "\n",
    "# Run non-linear registration on all the T1s,\n",
    "# using the linear registrations to initialise.\n",
    "nlinresults = [pool.apply_async(nonlinear_registration, (t1, std, aff))\n",
    "               for (t1, aff) in zip(t1s, linresults)]\n",
    "\n",
    "# Wait for each non-linear reg to finish,\n",
    "# and store the resulting warp field.\n",
    "start = time.time()\n",
    "for i, r in enumerate(nlinresults):\n",
    "    nlinresults[i] = r.get()\n",
    "end = time.time()\n",
    "\n",
    "print('Non-linear registrations completed in '\n",
    "      '{:0.2f} seconds'.format(end - start))\n",
    "\n",
    "print('Non linear registrations:')\n",
    "for t1, result in zip(t1s, nlinresults):\n",
    "    print(t1, ':', result)"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}