Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Threading and parallel processing\n",
"\n",
"\n",
"The Python language has built-in support for multi-threading in the\n",
"[`threading`](https://docs.python.org/3.5/library/threading.html) module, and\n",
"true parallelism in the\n",
"[`multiprocessing`](https://docs.python.org/3.5/library/multiprocessing.html)\n",
"module. If you want to be impressed, skip straight to the section on\n",
"[`multiprocessing`](todo).\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"## Threading\n",
"\n",
"\n",
"The [`threading`](https://docs.python.org/3.5/library/threading.html) module\n",
"provides a traditional multi-threading API that should be familiar to you if\n",
"you have worked with threads in other languages.\n",
"\n",
"\n",
"Running a task in a separate thread in Python is easy - simply create a\n",
"`Thread` object, and pass it the function or method that you want it to\n",
"run. Then call its `start` method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"import threading\n",
"\n",
"def longRunningTask(niters):\n",
" for i in range(niters):\n",
" if i % 2 == 0: print('Tick')\n",
" else: print('Tock')\n",
" time.sleep(0.5)\n",
"\n",
"t = threading.Thread(target=longRunningTask, args=(8,))\n",
"\n",
"t.start()\n",
"\n",
"while t.is_alive():\n",
" time.sleep(0.4)\n",
" print('Waiting for thread to finish...')\n",
"print('Finished!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also `join` a thread, which will block execution in the current thread\n",
"until the thread that has been `join`ed has finished:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"t = threading.Thread(target=longRunningTask, args=(6, ))\n",
"t.start()\n",
"\n",
"print('Joining thread ...')\n",
"t.join()\n",
"print('Finished!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Subclassing `Thread`\n",
"\n",
"\n",
"It is also possible to sub-class the `Thread` class, and override its `run`\n",
"method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class LongRunningThread(threading.Thread):\n",
" def __init__(self, niters, *args, **kwargs):\n",
" super().__init__(*args, **kwargs)\n",
" self.niters = niters\n",
"\n",
" def run(self):\n",
" for i in range(self.niters):\n",
" if i % 2 == 0: print('Tick')\n",
" else: print('Tock')\n",
" time.sleep(0.5)\n",
"\n",
"t = LongRunningThread(6)\n",
"t.start()\n",
"t.join()\n",
"print('Done')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Daemon threads\n",
"\n",
"\n",
"By default, a Python application will not exit until _all_ active threads have\n",
"finished execution. If you want to run a task in the background for the\n",
"duration of your application, you can mark it as a `daemon` thread - when all\n",
"non-daemon threads in a Python application have finished, all daemon threads\n",
"will be halted, and the application will exit.\n",
"\n",
"\n",
"You can mark a thread as being a daemon by setting an attribute on it after\n",
"creation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"t = threading.Thread(target=longRunningTask)\n",
"t.daemon = True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See the [`Thread`\n",
"documentation](https://docs.python.org/3.5/library/threading.html#thread-objects)\n",
"for more details.\n",
"\n",
"\n",
"### Thread synchronisation\n",
"\n",
"\n",
"The `threading` module provides some useful thread-synchronisation primitives\n",
"- the `Lock`, `RLock` (re-entrant `Lock`), and `Event` classes. The\n",
"`threading` module also provides `Condition` and `Semaphore` classes - refer\n",
"to the [documentation](https://docs.python.org/3.5/library/threading.html) for\n",
"more details.\n",
"\n",
"\n",
"#### `Lock`\n",
"\n",
"\n",
"The [`Lock`](https://docs.python.org/3.5/library/threading.html#lock-objects)\n",
"class (and its re-entrant version, the\n",
"[`RLock`](https://docs.python.org/3.5/library/threading.html#rlock-objects))\n",
"prevents a block of code from being accessed by more than one thread at a\n",
"time. For example, if we have multiple threads running this `task` function,\n",
"their [outputs](https://www.youtube.com/watch?v=F5fUFnfPpYU) will inevitably\n",
"become intertwined:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def task():\n",
" for i in range(5):\n",
" print('{} Woozle '.format(i), end='')\n",
" time.sleep(0.1)\n",
" print('Wuzzle')\n",
"\n",
"threads = [threading.Thread(target=task) for i in range(5)]\n",
"for t in threads:\n",
" t.start()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But if we protect the critical section with a `Lock` object, the output will\n",
"look more sensible:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lock = threading.Lock()\n",
"\n",
"def task():\n",
"\n",
" for i in range(5):\n",
" with lock:\n",
" print('{} Woozle '.format(i), end='')\n",
" time.sleep(0.1)\n",
" print('Wuzzle')\n",
"\n",
"threads = [threading.Thread(target=task) for i in range(5)]\n",
"for t in threads:\n",
" t.start()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Instead of using a `Lock` object in a `with` statement, it is also possible\n",
"> to manually call its `acquire` and `release` methods:\n",
">\n",
"> def task():\n",
"> for i in range(5):\n",
"> lock.acquire()\n",
"> print('{} Woozle '.format(i), end='')\n",
"> time.sleep(0.1)\n",
"> print('Wuzzle')\n",
"> lock.release()\n",
"\n",
"\n",
"Python does not have any built-in constructs to implement `Lock`-based mutual\n",
"exclusion across several functions or methods - each function/method must\n",
"explicitly acquire/release a shared `Lock` instance. However, it is relatively\n",
"straightforward to implement a decorator which does this for you:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def mutex(func, lock):\n",
" def wrapper(*args):\n",
" with lock:\n",
" func(*args)\n",
" return wrapper\n",
"\n",
"class MyClass(object):\n",
"\n",
" def __init__(self):\n",
" lock = threading.Lock()\n",
" self.safeFunc1 = mutex(self.safeFunc1, lock)\n",
" self.safeFunc2 = mutex(self.safeFunc2, lock)\n",
"\n",
" def safeFunc1(self):\n",
" time.sleep(0.1)\n",
" print('safeFunc1 start')\n",
" time.sleep(0.2)\n",
" print('safeFunc1 end')\n",
"\n",
" def safeFunc2(self):\n",
" time.sleep(0.1)\n",
" print('safeFunc2 start')\n",
" time.sleep(0.2)\n",
" print('safeFunc2 end')\n",
"\n",
"mc = MyClass()\n",
"\n",
"f1threads = [threading.Thread(target=mc.safeFunc1) for i in range(4)]\n",
"f2threads = [threading.Thread(target=mc.safeFunc2) for i in range(4)]\n",
"\n",
"for t in f1threads + f2threads:\n",
" t.start()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Try removing the `mutex` lock from the two methods in the above code, and see\n",
"what it does to the output.\n",
"\n",
"\n",
"#### `Event`\n",
"\n",
"\n",
"The\n",
"[`Event`](https://docs.python.org/3.5/library/threading.html#event-objects)\n",
"class is essentially a boolean [semaphore][semaphore-wiki]. It can be used to\n",
"signal events between threads. Threads can `wait` on the event, and be awoken\n",
"when the event is `set` by another thread:\n",
"\n",
"\n",
"[semaphore-wiki]: https://en.wikipedia.org/wiki/Semaphore_(programming)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"processingFinished = threading.Event()\n",
"\n",
"def processData(data):\n",
" print('Processing data ...')\n",
" time.sleep(2)\n",
" print('Result: {}'.format(data.mean()))\n",
" processingFinished.set()\n",
"\n",
"data = np.random.randint(1, 100, 100)\n",
"\n",
"t = threading.Thread(target=processData, args=(data,))\n",
"t.start()\n",
"\n",
"processingFinished.wait()\n",
"print('Processing finished!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The Global Interpreter Lock (GIL)\n",
"\n",
"\n",
"The [_Global Interpreter\n",
"Lock_](https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock)\n",
"is an implementation detail of [CPython](https://github.com/python/cpython)\n",
"(the official Python interpreter). The GIL means that a multi-threaded\n",
"program written in pure Python is not able to take advantage of multiple\n",
"cores - this essentially means that only one thread may be executing at any\n",
"point in time.\n",
"\n",
"\n",
"The `threading` module does still have its uses though, as this GIL problem\n",
"does not affect tasks which involve calls to system or natively compiled\n",
"libraries (e.g. file and network I/O, Numpy operations, etc.). So you can,\n",
"for example, perform some expensive processing on a Numpy array in a thread\n",
"running on one core, whilst having another thread (e.g. user interaction)\n",
"running on another core.\n",
"\n",
"\n",
"## Multiprocessing\n",
"\n",
"\n",
"For true parallelism, you should check out the\n",
"[`multiprocessing`](https://docs.python.org/3.5/library/multiprocessing.html)\n",
"module.\n",
"\n",
"\n",
"The `multiprocessing` module spawns sub-processes, rather than threads, and so\n",
"is not subject to the GIL constraints that the `threading` module suffers\n",
"from. It provides two APIs - a \"traditional\" equivalent to that provided by\n",
"the `threading` module, and a powerful higher-level API.\n",
"\n",
"\n",
"### `threading`-equivalent API\n",
"\n",
"\n",
"The\n",
"[`Process`](https://docs.python.org/3.5/library/multiprocessing.html#the-process-class)\n",
"class is the `multiprocessing` equivalent of the\n",
"[`threading.Thread`](https://docs.python.org/3.5/library/threading.html#thread-objects)\n",
"class. `multprocessing` also has equivalents of the [`Lock` and `Event`\n",
"classes](https://docs.python.org/3.5/library/multiprocessing.html#synchronization-between-processes),\n",
"and the other synchronisation primitives provided by `threading`.\n",
"\n",
"\n",
"So you can simply replace `threading.Thread` with `multiprocessing.Process`,\n",
"and you will have true parallelism.\n",
"\n",
"\n",
"Because your \"threads\" are now independent processes, you need to be a little\n",
"careful about how to share information across them. Fortunately, the\n",
"`multiprocessing` module provides [`Queue` and `Pipe`\n",
"classes](https://docs.python.org/3.5/library/multiprocessing.html#exchanging-objects-between-processes)\n",
"which make it easy to share data across processes.\n",
"\n",
"\n",
"### Higher-level API - the `multiprocessing.Pool`\n",
"\n",
"\n",
"The real advantages of `multiprocessing` lie in its higher level API, centered\n",
"around the [`Pool`\n",
"class](https://docs.python.org/3.5/library/multiprocessing.html#using-a-pool-of-workers).\n",
"\n",
"\n",
"Essentially, you create a `Pool` of worker processes - you specify the number\n",
"of processes when you create the pool.\n",
"\n",
"\n",
"> The best number of processes to use for a `Pool` will depend on the system\n",
"> you are running on (number of cores), and the tasks you are running (e.g.\n",
"> I/O bound or CPU bound).\n",
"\n",
"\n",
"Once you have created a `Pool`, you can use its methods to automatically\n",
"parallelise tasks. The most useful are the `map`, `starmap` and\n",
"`apply_async` methods.\n",
"\n",
"\n",
"#### `Pool.map`\n",
"\n",
"\n",
"The\n",
"[`Pool.map`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.map)\n",
"method is the multiprocessing equivalent of the built-in\n",
"[`map`](https://docs.python.org/3.5/library/functions.html#map) function - it\n",
"is given a function, and a sequence, and it applies the function to each\n",
"element in the sequence."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"import multiprocessing as mp\n",
"import numpy as np\n",
"\n",
"def crunchImage(imgfile):\n",
"\n",
" # Load a nifti image, do stuff\n",
" # to it. Use your imagination\n",
" # to fill in this function.\n",
" time.sleep(2)\n",
"\n",
" # numpy's random number generator\n",
" # will be initialised in the same\n",
" # way in each process, so let's\n",
" # re-seed it.\n",
" np.random.seed()\n",
" result = np.random.randint(1, 100, 1)\n",
"\n",
" print(imgfile, ':', result)\n",
"\n",
" return result\n",
"\n",
"imgfiles = ['{:02d}.nii.gz'.format(i) for i in range(20)]\n",
"\n",
"p = mp.Pool(processes=16)\n",
"\n",
"print('Crunching images...')\n",
"\n",
"start = time.time()\n",
"results = p.map(crunchImage, imgfiles)\n",
"end = time.time()\n",
"\n",
"print('Total execution time: {:0.2f} seconds'.format(end - start))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `Pool.map` method only works with functions that accept one argument, such\n",
"as our `crunchImage` function above. If you have a function which accepts\n",
"multiple arguments, use the\n",
"[`Pool.starmap`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.starmap)\n",
"method instead:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def crunchImage(imgfile, modality):\n",
" time.sleep(2)\n",
"\n",
" np.random.seed()\n",
"\n",
" if modality == 't1':\n",
" result = np.random.randint(1, 100, 1)\n",
" elif modality == 't2':\n",
" result = np.random.randint(100, 200, 1)\n",
"\n",
" print(imgfile, ': ', result)\n",
"\n",
" return result\n",
"\n",
"imgfiles = ['t1_{:02d}.nii.gz'.format(i) for i in range(10)] + \\\n",
" ['t2_{:02d}.nii.gz'.format(i) for i in range(10)]\n",
"modalities = ['t1'] * 10 + ['t2'] * 10\n",
"\n",
"pool = mp.Pool(processes=16)\n",
"\n",
"args = [(f, m) for f, m in zip(imgfiles, modalities)]\n",
"\n",
"print('Crunching images...')\n",
"\n",
"start = time.time()\n",
"results = pool.starmap(crunchImage, args)\n",
"end = time.time()\n",
"\n",
"print('Total execution time: {:0.2f} seconds'.format(end - start))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `map` and `starmap` methods also have asynchronous equivalents `map_async`\n",
"and `starmap_async`, which return immediately. Refer to the\n",
"[`Pool`](https://docs.python.org/3.5/library/multiprocessing.html#module-multiprocessing.pool)\n",
"documentation for more details.\n",
"\n",
"\n",
"#### `Pool.apply_async`\n",
"\n",
"\n",
"The\n",
"[`Pool.apply`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.apply)\n",
"method will execute a function on one of the processes, and block until it has\n",
"finished. The\n",
"[`Pool.apply_async`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool.apply_async)\n",
"method returns immediately, and is thus more suited to asynchronously\n",
"scheduling multiple jobs to run in parallel.\n",
"\n",
"\n",
"`apply_async` returns an object of type\n",
"[`AsyncResult`](https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.AsyncResult).\n",
"An `AsyncResult` object has `wait` and `get` methods which will block until\n",
"the job has completed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"import multiprocessing as mp\n",
"import numpy as np\n",
"\n",
"\n",
"def linear_registration(src, ref):\n",
" time.sleep(1)\n",
"\n",
" return np.eye(4)\n",
"\n",
"def nonlinear_registration(src, ref, affine):\n",
"\n",
" time.sleep(3)\n",
"\n",
" # this number represents a non-linear warp\n",
" # field - use your imagination people!\n",
" np.random.seed()\n",
" return np.random.randint(1, 100, 1)\n",
"\n",
"t1s = ['{:02d}_t1.nii.gz'.format(i) for i in range(20)]\n",
"std = 'MNI152_T1_2mm.nii.gz'\n",
"\n",
"pool = mp.Pool(processes=16)\n",
"\n",
"print('Running structural-to-standard registration '\n",
" 'on {} subjects...'.format(len(t1s)))\n",
"\n",
"# Run linear registration on all the T1s.\n",
"#\n",
"# We build a list of AsyncResult objects\n",
"linresults = [pool.apply_async(linear_registration, (t1, std))\n",
" for t1 in t1s]\n",
"\n",
"# Then we wait for each job to finish,\n",
"# and replace its AsyncResult object\n",
"# with the actual result - an affine\n",
"# transformation matrix.\n",
"start = time.time()\n",
"for i, r in enumerate(linresults):\n",
" linresults[i] = r.get()\n",
"end = time.time()\n",
"\n",
"print('Linear registrations completed in '\n",
" '{:0.2f} seconds'.format(end - start))\n",
"\n",
"# Run non-linear registration on all the T1s,\n",
"# using the linear registrations to initialise.\n",
"nlinresults = [pool.apply_async(nonlinear_registration, (t1, std, aff))\n",
" for (t1, aff) in zip(t1s, linresults)]\n",
"\n",
"# Wait for each non-linear reg to finish,\n",
"# and store the resulting warp field.\n",
"start = time.time()\n",
"for i, r in enumerate(nlinresults):\n",
" nlinresults[i] = r.get()\n",
"end = time.time()\n",
"\n",
"print('Non-linear registrations completed in '\n",
" '{:0.2f} seconds'.format(end - start))\n",
"\n",
"print('Non linear registrations:')\n",
"for t1, result in zip(t1s, nlinresults):\n",
" print(t1, ':', result)"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}