Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fslpy
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Analyze
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Evan Edmond
fslpy
Commits
552f07d7
Commit
552f07d7
authored
5 years ago
by
Paul McCarthy
Browse files
Options
Downloads
Patches
Plain Diff
TEST: Resample tests separated out into separate module. Add to
transform.decompose test
parent
1abeddcc
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
tests/test_image.py
+0
-167
0 additions, 167 deletions
tests/test_image.py
tests/test_image_resample.py
+190
-0
190 additions, 0 deletions
tests/test_image_resample.py
tests/test_transform.py
+11
-0
11 additions, 0 deletions
tests/test_transform.py
with
201 additions
and
167 deletions
tests/test_image.py
+
0
−
167
View file @
552f07d7
...
...
@@ -1065,173 +1065,6 @@ def _test_Image_save(imgtype):
img2
=
None
def
test_image_resample
(
seed
):
with
tempdir
()
as
td
:
fname
=
op
.
join
(
td
,
'
test.nii
'
)
# Random base image shapes
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
make_random_image
(
fname
,
shape
)
img
=
fslimage
.
Image
(
fname
,
mmap
=
False
)
# bad shape
with
pytest
.
raises
(
ValueError
):
img
.
resample
((
10
,
10
))
with
pytest
.
raises
(
ValueError
):
img
.
resample
((
10
,
10
,
10
,
10
))
# resampling to the same shape should be a no-op
samei
,
samex
=
img
.
resample
(
shape
)
assert
np
.
all
(
samei
==
img
[:])
assert
np
.
all
(
samex
==
img
.
voxToWorldMat
)
# Random resampled image shapes
for
j
in
range
(
10
):
rshape
=
np
.
random
.
randint
(
5
,
50
,
3
)
resampled
,
xf
=
img
.
resample
(
rshape
,
order
=
0
)
img
.
save
(
'
base.nii.gz
'
)
fslimage
.
Image
(
resampled
,
xform
=
xf
,
mmap
=
False
).
save
(
'
res.nii.gz
'
)
assert
tuple
(
resampled
.
shape
)
==
tuple
(
rshape
)
# We used nearest neighbour interp, so the
# values in the resampled image should match
# corresponding values in the original. Let's
# check some whynot.
restestcoords
=
np
.
array
([
np
.
random
.
randint
(
0
,
rshape
[
0
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
1
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
2
],
100
)]).
T
resx
,
resy
,
resz
=
restestcoords
.
T
resvals
=
resampled
[
resx
,
resy
,
resz
]
res2orig
=
transform
.
concat
(
img
.
worldToVoxMat
,
xf
)
origtestcoords
=
transform
.
transform
(
restestcoords
,
res2orig
)
# remove any coordinates which are out of
# bounds in the original image space, or
# are right on a voxel boundary (where the
# nn interp could have gone either way), or
# have value == 0 in the resampled space.
out
=
((
origtestcoords
<
0
)
|
(
origtestcoords
>=
shape
-
0.5
)
|
(
np
.
isclose
(
np
.
modf
(
origtestcoords
)[
0
],
0.5
)))
out
=
np
.
any
(
out
,
axis
=
1
)
|
(
resvals
==
0
)
origtestcoords
=
np
.
array
(
origtestcoords
.
round
(),
dtype
=
np
.
int
)
origtestcoords
=
origtestcoords
[
~
out
,
:]
restestcoords
=
restestcoords
[
~
out
,
:]
resx
,
resy
,
resz
=
restestcoords
.
T
origx
,
origy
,
origz
=
origtestcoords
.
T
origvals
=
img
[:][
origx
,
origy
,
origz
]
resvals
=
resampled
[
resx
,
resy
,
resz
]
assert
np
.
all
(
np
.
isclose
(
resvals
,
origvals
))
del
img
img
=
None
def
test_image_resample_4d
(
seed
):
fname
=
'
test.nii.gz
'
with
tempdir
():
make_random_image
(
fname
,
(
10
,
10
,
10
,
10
))
# resample one volume
img
=
fslimage
.
Image
(
fname
)
slc
=
(
slice
(
None
),
slice
(
None
),
slice
(
None
),
3
)
resampled
=
img
.
resample
(
img
.
shape
[:
3
],
slc
)[
0
]
assert
np
.
all
(
resampled
==
img
[...,
3
])
# resample up
resampled
=
img
.
resample
((
15
,
15
,
15
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
)
# resample down
resampled
=
img
.
resample
((
5
,
5
,
5
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
)
# resample the entire image
resampled
=
img
.
resample
((
15
,
15
,
15
,
10
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
10
)
resampled
=
img
.
resample
((
5
,
5
,
5
,
10
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
10
)
# resample along the fourth dim
resampled
=
img
.
resample
((
15
,
15
,
15
,
15
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
15
)
resampled
=
img
.
resample
((
5
,
5
,
5
,
15
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
15
)
del
img
del
resampled
img
=
None
resampled
=
None
def
test_Image_resample_offset
(
seed
):
with
tempdir
()
as
td
:
fname
=
op
.
join
(
td
,
'
test.nii
'
)
make_random_image
(
fname
,
(
10
,
10
,
10
))
img
=
fslimage
.
Image
(
fname
)
# with origin='corner', image
# bounding boxes should match
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
img
.
resample
(
shape
,
origin
=
'
corner
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
imgb
=
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
)
resb
=
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
)
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='centre' image
# bounding boxes should be offset
# by (size_resampled - size_orig) / 2
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
img
.
resample
(
shape
,
origin
=
'
centre
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
off
=
(
np
.
array
(
img
.
shape
)
/
np
.
array
(
res
.
shape
)
-
1
)
/
2
imgb
=
np
.
array
(
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
))
resb
=
np
.
array
(
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
))
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
+
off
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='corner', using
# linear interp, when we down-
# sample an image to a shape
# that divides evenly into the
# original shape, a downsampled
# voxel should equal the average
# of the original voxels inside
# it.
res
=
img
.
resample
((
5
,
5
,
5
),
smooth
=
False
,
origin
=
'
corner
'
)[
0
]
for
x
,
y
,
z
in
it
.
product
(
range
(
5
),
range
(
5
),
range
(
5
)):
block
=
img
[
x
*
2
:
x
*
2
+
2
,
y
*
2
:
y
*
2
+
2
,
z
*
2
:
z
*
2
+
2
]
assert
np
.
isclose
(
res
[
x
,
y
,
z
],
block
.
mean
())
def
test_Image_init_xform_nifti1
():
_test_Image_init_xform
(
1
)
def
test_Image_init_xform_nifti2
():
_test_Image_init_xform
(
2
)
def
_test_Image_init_xform
(
imgtype
):
...
...
This diff is collapsed.
Click to expand it.
tests/test_image_resample.py
0 → 100644
+
190
−
0
View file @
552f07d7
#!/usr/bin/env python
import
itertools
as
it
import
os.path
as
op
import
numpy
as
np
import
pytest
import
fsl.data.image
as
fslimage
import
fsl.utils.transform
as
transform
import
fsl.utils.image.resample
as
resample
from
fsl.utils.tempdir
import
tempdir
from
.
import
make_random_image
def
test_resample
(
seed
):
with
tempdir
()
as
td
:
fname
=
op
.
join
(
td
,
'
test.nii
'
)
# Random base image shapes
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
make_random_image
(
fname
,
shape
)
img
=
fslimage
.
Image
(
fname
,
mmap
=
False
)
# bad shape
with
pytest
.
raises
(
ValueError
):
resample
.
resample
(
img
,
(
10
,
10
))
with
pytest
.
raises
(
ValueError
):
resample
.
resample
(
img
,
(
10
,
10
,
10
,
10
))
# resampling to the same shape should be a no-op
samei
,
samex
=
resample
.
resample
(
img
,
shape
)
assert
np
.
all
(
samei
==
img
[:])
assert
np
.
all
(
samex
==
img
.
voxToWorldMat
)
# Random resampled image shapes
for
j
in
range
(
10
):
rshape
=
np
.
random
.
randint
(
5
,
50
,
3
)
resampled
,
xf
=
resample
.
resample
(
img
,
rshape
,
order
=
0
)
img
.
save
(
'
base.nii.gz
'
)
fslimage
.
Image
(
resampled
,
xform
=
xf
,
mmap
=
False
).
save
(
'
res.nii.gz
'
)
assert
tuple
(
resampled
.
shape
)
==
tuple
(
rshape
)
# We used nearest neighbour interp, so the
# values in the resampled image should match
# corresponding values in the original. Let's
# check some whynot.
restestcoords
=
np
.
array
([
np
.
random
.
randint
(
0
,
rshape
[
0
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
1
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
2
],
100
)]).
T
resx
,
resy
,
resz
=
restestcoords
.
T
resvals
=
resampled
[
resx
,
resy
,
resz
]
res2orig
=
transform
.
concat
(
img
.
worldToVoxMat
,
xf
)
origtestcoords
=
transform
.
transform
(
restestcoords
,
res2orig
)
# remove any coordinates which are out of
# bounds in the original image space, or
# are right on a voxel boundary (where the
# nn interp could have gone either way), or
# have value == 0 in the resampled space.
out
=
((
origtestcoords
<
0
)
|
(
origtestcoords
>=
shape
-
0.5
)
|
(
np
.
isclose
(
np
.
modf
(
origtestcoords
)[
0
],
0.5
)))
out
=
np
.
any
(
out
,
axis
=
1
)
|
(
resvals
==
0
)
origtestcoords
=
np
.
array
(
origtestcoords
.
round
(),
dtype
=
np
.
int
)
origtestcoords
=
origtestcoords
[
~
out
,
:]
restestcoords
=
restestcoords
[
~
out
,
:]
resx
,
resy
,
resz
=
restestcoords
.
T
origx
,
origy
,
origz
=
origtestcoords
.
T
origvals
=
img
[:][
origx
,
origy
,
origz
]
resvals
=
resampled
[
resx
,
resy
,
resz
]
assert
np
.
all
(
np
.
isclose
(
resvals
,
origvals
))
del
img
img
=
None
def
test_resample_4d
(
seed
):
fname
=
'
test.nii.gz
'
with
tempdir
():
make_random_image
(
fname
,
(
10
,
10
,
10
,
10
))
# resample one volume
img
=
fslimage
.
Image
(
fname
)
slc
=
(
slice
(
None
),
slice
(
None
),
slice
(
None
),
3
)
resampled
=
resample
.
resample
(
img
,
img
.
shape
[:
3
],
slc
)[
0
]
assert
np
.
all
(
resampled
==
img
[...,
3
])
# resample up
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
)
# resample down
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
)
# resample the entire image
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
,
10
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
10
)
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
,
10
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
10
)
# resample along the fourth dim
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
,
15
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
15
)
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
,
15
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
15
)
del
img
del
resampled
img
=
None
resampled
=
None
def
test_resample_origin
(
seed
):
with
tempdir
()
as
td
:
fname
=
op
.
join
(
td
,
'
test.nii
'
)
make_random_image
(
fname
,
(
10
,
10
,
10
))
img
=
fslimage
.
Image
(
fname
)
# with origin='corner', image
# bounding boxes should match
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
resample
.
resample
(
img
,
shape
,
origin
=
'
corner
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
imgb
=
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
)
resb
=
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
)
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='centre' image
# bounding boxes should be offset
# by (size_resampled - size_orig) / 2
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
resample
.
resample
(
img
,
shape
,
origin
=
'
centre
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
off
=
(
np
.
array
(
img
.
shape
)
/
np
.
array
(
res
.
shape
)
-
1
)
/
2
imgb
=
np
.
array
(
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
))
resb
=
np
.
array
(
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
))
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
+
off
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='corner', using
# linear interp, when we down-
# sample an image to a shape
# that divides evenly into the
# original shape, a downsampled
# voxel should equal the average
# of the original voxels inside
# it.
res
=
resample
.
resample
(
img
,
(
5
,
5
,
5
),
smooth
=
False
,
origin
=
'
corner
'
)[
0
]
for
x
,
y
,
z
in
it
.
product
(
range
(
5
),
range
(
5
),
range
(
5
)):
block
=
img
[
x
*
2
:
x
*
2
+
2
,
y
*
2
:
y
*
2
+
2
,
z
*
2
:
z
*
2
+
2
]
assert
np
.
isclose
(
res
[
x
,
y
,
z
],
block
.
mean
())
def
test_resampleToPixdims
():
pass
def
test_resampleToReference
():
pass
This diff is collapsed.
Click to expand it.
tests/test_transform.py
+
11
−
0
View file @
552f07d7
...
...
@@ -268,6 +268,17 @@ def test_compose_and_decompose():
assert
np
.
all
(
np
.
isclose
(
rotat
,
rots
))
assert
np
.
all
(
np
.
isclose
(
rotaf
,
rmat
))
# decompose should accept a 3x3
# affine, and return translations of 0
transform
.
decompose
(
xform
[:
3
,
:
3
])
sc
,
of
,
rot
=
transform
.
decompose
(
xform
[:
3
,
:
3
])
sc
,
of
,
rot
=
np
.
array
(
sc
),
np
.
array
(
of
),
np
.
array
(
rot
)
assert
np
.
all
(
np
.
isclose
(
sc
,
[
1
,
1
,
1
]))
assert
np
.
all
(
np
.
isclose
(
of
,
[
0
,
0
,
0
]))
assert
np
.
all
(
np
.
isclose
(
rot
,
rots
))
def
test_rotMatToAxisAngles
(
seed
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment