Skip to content
Snippets Groups Projects
Commit 9d5c986e authored by Paul McCarthy's avatar Paul McCarthy :mountain_bicyclist:
Browse files

Merge branch 'rf/resample_$d' into 'master'

Rf/resample $d

See merge request fsl/fslpy!86
parents 16496d1d 9b9d4460
No related branches found
No related tags found
No related merge requests found
......@@ -21,6 +21,8 @@ Changed
* Minimum required version of ``nibabel`` is now 2.3.
* The :class:`.Image` class now fully delegates to ``nibabel`` for managing
file handles.
* The :meth:`.Image.resample` method now supports images with more than three
dimensions.
Removed
......@@ -38,6 +40,7 @@ Fixed
* Make sure that FEAT ``Cluster`` objects (created by the
:func:`.loadClusterResults` function) contain ``p`` and ``logp`` attributes,
even when cluster thresholding was not used.
* Fix to the :class:`.ImageWrapper` regarding complex data types.
1.13.0 (Thursday 22nd November 2018)
......
......@@ -1173,7 +1173,7 @@ class Image(Nifti):
order=1,
smooth=True):
"""Returns a copy of the data in this ``Image``, resampled to the
specified ``shape``.
specified ``newShape``.
:arg newShape: Desired shape. May containg floating point values,
in which case the resampled image will have shape
......@@ -1182,7 +1182,7 @@ class Image(Nifti):
:arg sliceobj: Slice into this ``Image``. If ``None``, the whole
image is resampled, and it is assumed that it has the
same number of dimensions as ``shape``. A
same number of dimensions as ``newShape``. A
:exc:`ValueError` is raised if this is not the case.
:arg dtype: ``numpy`` data type of the resampled data. If ``None``,
......@@ -1201,12 +1201,12 @@ class Image(Nifti):
:returns: A tuple containing:
- A ``numpy`` array of shape ``shape``, containing an
interpolated copy of the data in this ``Image``.
- A ``numpy`` array of shape ``newShape``, containing
an interpolated copy of the data in this ``Image``.
- A ``numpy`` array of shape ``(4, 4)``, containing the
adjusted voxel-to-world transformation for the resampled
data.
adjusted voxel-to-world transformation for the spatial
dimensions of the resampled data.
"""
if sliceobj is None: sliceobj = slice(None)
......@@ -1225,7 +1225,7 @@ class Image(Nifti):
ratio = oldShape / newShape
newShape = np.array(np.round(newShape), dtype=np.int)
scale = transform.scaleOffsetXform(ratio, 0)
scale = np.diag(ratio)
# If interpolating and smoothing, we apply a
# gaussian filter along axes with a resampling
......@@ -1242,7 +1242,7 @@ class Image(Nifti):
data = ndimage.gaussian_filter(data, sigma)
data = ndimage.affine_transform(data,
scale[:3, :3],
scale,
output_shape=newShape,
order=order)
......@@ -1250,6 +1250,7 @@ class Image(Nifti):
# puts the resampled image into the
# same world coordinate system as this
# image.
scale = transform.scaleOffsetXform(ratio[:3], 0)
xform = transform.concat(self.voxToWorldMat, scale)
else:
xform = self.voxToWorldMat
......
......@@ -301,7 +301,14 @@ class ImageWrapper(notifier.Notifier):
# Internally, we calculate and store the
# data range for each volume/slice/vector
self.__volRanges = np.zeros((nvols, 2), dtype=np.float32)
#
# We use nan as a placeholder, so the
# dtype must be non-integral
dtype = self.__image.get_data_dtype()
if np.issubdtype(dtype, np.integer):
dtype = np.float32
self.__volRanges = np.zeros((nvols, 2),
dtype=dtype)
self.__coverage[ :] = np.nan
self.__volRanges[:] = np.nan
......
......@@ -1078,6 +1078,12 @@ def test_image_resample(seed):
make_random_image(fname, shape)
img = fslimage.Image(fname, mmap=False)
# bad shape
with pytest.raises(ValueError):
img.resample((10, 10))
with pytest.raises(ValueError):
img.resample((10, 10, 10, 10))
# resampling to the same shape should be a no-op
samei, samex = img.resample(shape)
assert np.all(samei == img[:])
......@@ -1134,18 +1140,50 @@ def test_image_resample(seed):
assert np.all(np.isclose(resvals, origvals))
# Test a 4D image
del img
img = None
def test_image_resample_4d(seed):
fname = 'test.nii.gz'
with tempdir():
make_random_image(fname, (10, 10, 10, 10))
# resample one volume
img = fslimage.Image(fname)
slc = (slice(None), slice(None), slice(None), 3)
resampled = img.resample(img.shape[:3], slc)[0]
assert np.all(resampled == img[..., 3])
# resample up
resampled = img.resample((15, 15, 15), slc)[0]
assert tuple(resampled.shape) == (15, 15, 15)
# resample down
resampled = img.resample((5, 5, 5), slc)[0]
assert tuple(resampled.shape) == (5, 5, 5)
# resample the entire image
resampled = img.resample((15, 15, 15, 10), None)[0]
assert tuple(resampled.shape) == (15, 15, 15, 10)
resampled = img.resample((5, 5, 5, 10), None)[0]
assert tuple(resampled.shape) == (5, 5, 5, 10)
# resample along the fourth dim
resampled = img.resample((15, 15, 15, 15), None)[0]
assert tuple(resampled.shape) == (15, 15, 15, 15)
resampled = img.resample((5, 5, 5, 15), None)[0]
assert tuple(resampled.shape) == (5, 5, 5, 15)
del img
del resampled
img = None
resampled = None
def test_Image_init_xform_nifti1(): _test_Image_init_xform(1)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment