Newer
Older
/* AutoCorrEstimator.cc
Mark Woolrich, FMRIB Image Analysis Group
Copyright (C) 1999-2000 University of Oxford */
/* Part of FSL - FMRIB's Software Library
WWW: http://www.fmrib.ox.ac.uk/fsl
Email: fsl@fmrib.ox.ac.uk
Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain), Department of Clinical Neurology, Oxford
University, Oxford, UK
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but in
order that the University as a charitable foundation protects its
assets for the benefit of its educational and research purposes, the
University makes clear that no condition is made or to be implied, nor
is any warranty given or to be implied, as to the accuracy of FSL, or
that it will be suitable for any particular purpose or for use under
any specific conditions. Furthermore, the University disclaims all
responsibility for the use which is made of FSL. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA */
#include <iostream>
#include <strstream>
#include "miscmaths/miscmaths.h"
#include "utils/log.h"
void AutoCorrEstimator::setDesignMatrix(const Matrix& dm) {
Tracer tr("AutoCorrEstimator::setDesignMatrix");
int sizeTS = xdata.getNumVolumes();
int numPars = dm.Ncols();
dminFFTReal.ReSize(zeropad, numPars);
dminFFTImag.ReSize(zeropad, numPars);
ColumnVector dmrow;
dmrow.ReSize(zeropad);
ColumnVector dm_fft_real, dm_fft_imag;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
// FFT design matrix
for(int k = 1; k <= numPars; k++)
{
dummy = 0;
dmrow = 0;
mn(k) = MISCMATHS::mean(ColumnVector(dm.Column(k))).AsScalar();
dmrow.Rows(1,sizeTS) = dm.Column(k) - mn(k);
FFT(dmrow, dummy, dm_fft_real, dm_fft_imag);
dminFFTImag.Column(k) = dm_fft_imag;
dminFFTReal.Column(k) = dm_fft_real;
}
}
void AutoCorrEstimator::preWhiten(ColumnVector& in, ColumnVector& ret, int i, Matrix& dmret, bool highfreqremovalonly) {
Tracer tr("AutoCorrEstimator::preWhiten");
int sizeTS = xdata.getNumVolumes();
int numPars = dminFFTReal.getNumSeries();
ret.ReSize(sizeTS);
dmret.ReSize(sizeTS, numPars);
// FFT auto corr estimate
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.getSeries(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, ac_fft_real, ac_fft_im);
float norm = ac_fft_real.SumSquare();
// Compare with raw FFT to detect high frequency artefacts:
bool violate = false;
ColumnVector violators(zeropad);
violators = 1;
for(int j = 1; j <= zeropad; j++)
{
if(highfreqremovalonly)
{
E(j,i) = sqrt(E(j,i)/((ac_fft_real(j)*ac_fft_real(j))/norm));
// look for high frequency artefacts
if(E(j,i) > 4 && j > zeropad/4 && j < 3*zeropad/4)
{
violate = true;
violators(j) = 0;
countLargeE(j) = countLargeE(j) + 1;
}
// FFT x data
dummy = 0;
xrow = 0;
xrow.Rows(1,sizeTS) = in;
FFT(xrow, dummy, x_fft_real, x_fft_im);
ac_fft_real = violators;
}
else
{
// inverse auto corr to give prewhitening filter
// no DC component so set first value to 0
ac_fft_real(1) = 0.0;
for(int j = 2; j <= zeropad; j++)
{
ac_fft_real(j) = 1.0/sqrt(fabs(ac_fft_real(j)));
// normalise ac_fft such that sum(j)(ac_fft_real)^2 = 1
ac_fft_real /= sqrt(ac_fft_real.SumSquare()/zeropad);
// filter design matrix
for(int k = 1; k <= numPars; k++)
{
dm_fft_real = dminFFTReal.getSeries(k);
dm_fft_imag = dminFFTImag.getSeries(k);
FFTI(SP(ac_fft_real, dm_fft_real), SP(ac_fft_real, dm_fft_imag), realifft, dummy);
// place result into ret:
dmret.Column(k) = realifft.Rows(1,sizeTS) + mn(k);
//float std = pow(MISCMATHS::var(ColumnVector(dmret.Column(k))),0.5);
//dmret.Column(k) = (dmret.Column(k)/std) + mn(k);
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
FFTI(SP(ac_fft_real, x_fft_real), SP(ac_fft_real, x_fft_im), realifft, dummy);
// place result into ret:
ret = realifft.Rows(1,sizeTS);
}
void AutoCorrEstimator::preWhiten(VolumeSeries& in, VolumeSeries& ret)
{
Tracer tr("AutoCorrEstimator::preWhiten");
cerr << "Prewhitening... ";
int sizeTS = xdata.getNumVolumes();
int numTS = xdata.getNumSeries();
ret.ReSize(sizeTS, numTS);
// make sure p_vrow is cyclic (even function)
ColumnVector vrow, xrow;
vrow.ReSize(zeropad);
xrow.ReSize(zeropad);
ColumnVector x_fft_real, ac_fft_real;
ColumnVector x_fft_im, ac_fft_im;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
int co = 1;
for(int i = 1; i <= numTS; i++)
{
// FFT auto corr estimate
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.getSeries(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, ac_fft_real, ac_fft_im);
// FFT x data
dummy = 0;
xrow = 0;
xrow.Rows(1,sizeTS/2) = in.getSeries(i).Rows(1,sizeTS/2);
xrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = in.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(xrow, dummy, x_fft_real, x_fft_im);
// inverse auto corr to give prewhitening filter:
// no DC component so set first value to 0;
ac_fft_real(1) = 0.0;
for(int j = 2; j <= zeropad; j++)
{
ac_fft_real(j) = 1.0/ac_fft_real(j);
}
// normalise ac_fft such that sum(j)(ac_fft_real)^2 = 1
ac_fft_real /= sqrt(ac_fft_real.SumSquare()/zeropad);
// Do filtering and inverse FFT:
FFTI(SP(ac_fft_real, x_fft_real), SP(ac_fft_real, x_fft_im), realifft, dummy);
// place result into ret:
ret.Column(i) = realifft.Rows(1,sizeTS);
if(co > 100)
{
co = 1;
cerr << (float)i/(float)numTS << ",";
}
else
co++;
}
cerr << " Completed" << endl;
}
void AutoCorrEstimator::fitAutoRegressiveModel()
{
Tracer trace("AutoCorrEstimator::fitAutoRegressiveModel");
cerr << "Fitting autoregressive model..." << endl;
const int maxorder = 15;
const int minorder = 1;
int sizeTS = xdata.getNumVolumes();
int numTS = xdata.getNumSeries();
// setup temp variables
ColumnVector x(sizeTS);
ColumnVector order(numTS);
VolumeSeries betas(maxorder, numTS);
betas = 0;
acEst.ReSize(sizeTS, numTS);
acEst = 0;
int co = 1;
for(int i = 1; i <= numTS; i++)
{
x = xdata.getSeries(i).AsColumn();
order(i) = pacf(x, minorder, maxorder, betastmp);
if(order(i) != -1)
{
// Calculate auto corr:
ColumnVector Krow(sizeTS);
Krow = 0;
Krow(sizeTS) = 1;
Krow.Rows(sizeTS-int(order(i)), sizeTS-1) = -betastmp.Rows(1,int(order(i))).Reverse();
betas.SubMatrix(1,int(order(i)),i,i) = betastmp.Rows(1,int(order(i)));
if(order(i)==1)
{
float arone = betastmp(1);
for(int k = 1; k <= sizeTS; k++)
{
Kinv(j,k) = MISCMATHS::pow(float(arone),int(abs(k-j)));
}
}
else
Kinv.SubMatrix(j,j,1,j) = Krow.Rows(sizeTS-j+1,sizeTS).t();
//MISCMATHS::write_ascii_matrix(Kinv,"Kinv");
if(order(i)!=1)
Kinv = (Kinv.t()*Kinv).i();
acEst.SubMatrix(1,sizeTS/2+1,i,i) = (Kinv.SubMatrix(sizeTS/2, sizeTS/2, sizeTS/2, sizeTS)/Kinv.MaximumAbsoluteValue()).AsColumn();
co = 1;
cerr << (float)i/(float)numTS << ",";
}
write_ascii_matrix(LogSingleton::getInstance().appendDir("order"), order);
write_ascii_matrix(LogSingleton::getInstance().appendDir("betas"), betas);
VolumeSeries::Dims dims = xdata.getDims();
dims.v = maxorder;
betas.unthresholdSeries(dims,xdata.getPreThresholdPositions());
betas.writeAsFloat(LogSingleton::getInstance().getDir() + "/betas");
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
int AutoCorrEstimator::pacf(const ColumnVector& x, int minorder, int maxorder, ColumnVector& betas)
{
Tracer ts("pacf");
int order = -1;
int sizeTS = x.Nrows();
// Set c
Matrix c(1,1);
c(1,1) = 1;
Glm glm;
for(int i = minorder+1; i <= maxorder+1; i++)
{
ColumnVector y = x.Rows(i+1,sizeTS);
// Setup design matrix
Matrix X(sizeTS-i, i);
X = 0;
for(int j = 1; j <= i; j++)
{
X.Column(j) = x.Rows(i+1-j,sizeTS-j).AsColumn();
}
glm.setData(y, X, c);
glm.ComputeResids();
betas = glm.Getb();
if((abs(betas(i)) < (1/sizeTS) + (2/pow(sizeTS,0.5)) && order == -1)
|| i == maxorder+1)
{
order = i-1;
break;
}
}
return order;
}
int AutoCorrEstimator::establishUsanThresh(const Volume& epivol)
{
int usanthresh = 100;
int num = epivol.getVolumeSize();
Histogram hist(epivol, num/200);
hist.generate();
float mode = hist.mode();
cerr << "mode = " << mode << endl;
float sum = 0.0;
int count = 0;
// Work out standard deviation from mode for values greater than mode:
for(int i = 1; i <= num; i++) {
if(epivol(i) > mode) {
sum = sum + (epivol(i) - mode)*(epivol(i) - mode);
count++;
}
}
int sig = (int)pow(sum/num, 0.5);
cerr << "sig = " << sig << endl;
usanthresh = sig/3;
return usanthresh;
}
void AutoCorrEstimator::spatiallySmooth(const string& usanfname, const Volume& epivol, int masksize, const string& epifname, const string& susanpath, int usanthresh, int lag) {
Tracer trace("AutoCorrEstimator::spatiallySmooth");
if(lag==0)
lag = MISCMATHS::Min(40,int(xdata.getNumVolumes()/4));
if(usanthresh == 0)
{
// Establish epi thresh to use:
usanthresh = establishUsanThresh(epivol);
}
// Setup external call to susan program:
char callsusanstr[1000];
ostrstream osc3(callsusanstr,1000);
string preSmoothVol = "preSmoothVol";
string postSmoothVol = "postSmoothVol";
osc3 << susanpath << " "
<< logger.getDir() << "/" << preSmoothVol << " 1 "
<< logger.getDir() << "/" << postSmoothVol << " "
<< masksize << " 3D 0 1 " << usanfname << " " << usanthresh << " "
<< logger.getDir() << "/" << "usanSize" << '\0';
// Loop through first third of volumes
// assume the rest are zero
int factor = 10000;
// Setup volume for reading and writing volumes:
Volume vol(acEst.getNumSeries(), xdata.getDims(), xdata.getPreThresholdPositions());
int i = 2;
cerr << "Spatially smoothing auto corr estimates" << endl;
cerr << callsusanstr << endl;
{
// output unsmoothed estimates:
vol = acEst.getVolume(i).AsColumn()*factor;
vol.unthreshold();
vol.writeAsInt(logger.getDir() + "/" + preSmoothVol);
// call susan:
system(callsusanstr);
// read in smoothed volume:
vol.read(logger.getDir() + "/" + postSmoothVol);
vol.threshold();
acEst.getVolume(i) = vol.AsRow()/factor;
cerr << ".";
}
cerr << endl;
// Clear unwanted written files
char rmfilesstr[1000];
ostrstream osc(rmfilesstr,1000);
osc << "rm -rf "
<< logger.getDir() + "/" + postSmoothVol + "* "
<< logger.getDir() + "/" + preSmoothVol + "* "
<< logger.getDir() + "/usanSize*" << '\0';
cerr << rmfilesstr << endl;
system(rmfilesstr);
cerr << "Completed" << endl;
}
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
cerr << " Completed" << endl;
}
void AutoCorrEstimator::filter(const ColumnVector& filterFFT) {
Tracer tr("AutoCorrEstimator::filter");
cerr << "Combining temporal filtering effects with AutoCorr estimates... ";
// This function adjusts the autocorrelations as if the
// xdata has been filtered by the passed in filterFFT
// DOES NOT filter the xdata itself
ColumnVector vrow;
// make sure p_vrow is cyclic (even function)
vrow.ReSize(zeropad);
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
int sizeTS = xdata.getNumVolumes();
for(int i = 1; i <= xdata.getNumSeries(); i++)
{
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.getSeries(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, fft_real, fft_im);
FFTI(SP(fft_real, filterFFT), dummy, realifft, dummy);
// place result into acEst:
acEst.Column(i) = realifft.Rows(1,sizeTS)/realifft(1);
}
cerr << " Completed" << endl;
}
void AutoCorrEstimator::multitaper(int M) {
Tracer tr("AutoCorrEstimator::multitaper");
cerr << "Multitapering... ";
int sizeTS = xdata.getNumVolumes();
int numTS = xdata.getNumSeries();
Matrix slepians;
getSlepians(M, sizeTS, slepians);
//LogSingleton::getInstance().out("slepians", slepians, false);
ColumnVector x(zeropad);
x = 0;
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector dummy2;
ColumnVector realifft(zeropad);
dummy = 0;
Matrix Sk(zeropad, slepians.Ncols());
acEst.ReSize(sizeTS, numTS);
acEst = 0;
for(int i = 1; i <= numTS; i++)
{
// Compute FFT for each slepian taper
for(int k = 1; k <= slepians.Ncols(); k++)
{
x.Rows(1,sizeTS) = SP(slepians.Column(k), xdata.getSeries(i));
//LogSingleton::getInstance().out("x", xdata.getSeries(i), false);
FFT(x, dummy, fft_real, fft_im);
for(int j = 1; j <= zeropad; j++)
{
// (x+iy)(x-iy) = x^2 + y^2
fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
Sk(j,k) = fft_real(j);
}
}
// Pool multitaper FFTs
fft_im = 0;
for(int j = 1; j <= zeropad; j++)
{
fft_real(j) = MISCMATHS::mean(ColumnVector(Sk.Row(j).t())).AsScalar();
}
// IFFT to get autocorr
FFTI(fft_real, fft_im, realifft, dummy2);
//LogSingleton::getInstance().out("Sk", Sk, false);
//LogSingleton::getInstance().out("realifft", realifft);
//LogSingleton::getInstance().out("fftreal", fft_real);
float varx = MISCMATHS::var(ColumnVector(x.Rows(1,sizeTS))).AsScalar();
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
acEst.getSeries(i) = realifft.Rows(1,sizeTS)/varx;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getSlepians(int M, int sizeTS, Matrix& slepians) {
Tracer tr("AutoCorrEstimator::getSlepians");
slepians.ReSize(sizeTS, 2*M);
ifstream in;
char strc[10];
ostrstream osc(strc,10);
osc << sizeTS << "_" << M << '\0';
string fname("/usr/people/woolrich/parads/mt_" + string(strc));
in.open(fname.c_str(), ios::in);
if(!in)
throw Exception("Multitapering: Slepians file not found");
for(int j = 1; j <= sizeTS; j++)
{
for(int i = 1; i <= 2*M; i++)
{
in >> slepians(j,i);
}
}
in.close();
}
void AutoCorrEstimator::tukey(int M) {
Tracer tr("AutoCorrEstimator::tukey");
cerr << "Tukey M = " << M << endl;
cerr << "Tukey estimates... ";
int sizeTS = xdata.getNumVolumes();
ColumnVector window(M);
for(int j = 1; j <= M; j++)
{
window(j) = 0.5*(1+cos(M_PI*j/(float(M))));
}
for(int i = 1; i <= xdata.getNumSeries(); i++) {
acEst.SubMatrix(1,M,i,i) = SP(acEst.SubMatrix(1,M,i,i),window);
acEst.SubMatrix(M+1,sizeTS,i,i) = 0;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
void AutoCorrEstimator::pava() {
Tracer tr("AutoCorrEstimator::pava");
cerr << "Using New PAVA on AutoCorr estimates... ";
for(int i = 1; i <= xdata.getNumSeries(); i++) {
int sizeTS = xdata.getNumVolumes();
int stopat = (int)sizeTS/2;
// 5% point of distribution of autocorr about zero
const float th = (-1/sizeTS)+(2/sqrt(sizeTS));
ColumnVector values = acEst.Column(i);
ColumnVector zero(1);
zero = 0;
values = values.Rows(1,stopat) & zero;
ColumnVector gm(stopat + 1);
for(int j = 1; j <= stopat + 1; gm(j) = j++);
ColumnVector weights(stopat+1);
weights = 1;
bool anyviolators = true;
while(anyviolators) {
anyviolators = false;
for(int k = 2; k <= values.Nrows(); k++) {
if(values(k) > values(k-1)) {
anyviolators = true;
values(k-1) = (values(k-1)*weights(k-1) + values(k)*weights(k))/(weights(k-1) + weights(k));
values = values.Rows(1,k-1) & values.Rows(k+1,values.Nrows());
weights(k-1) = weights(k) + weights(k-1);
weights = weights.Rows(1,k-1) & weights.Rows(k+1,weights.Nrows());
for(int j = 1; j <= stopat + 1; j++) {
if(gm(j) >= k)
gm(j) = gm(j)-1;
}
break;
}
}
}
acEst.Column(i) = 0.0;
int j=1;
for(; j <= stopat; j++) {
if(acEst(j,i) <= 0.0)
{
acEst(j,i) = 0.0;
break;
}
}
if(acEst(2,i) < th/2)
{
acEst.SubMatrix(2,stopat,i,i) = 0;
}
else if(j > 2)
//if(j > 2)
int endst = j;
int stst = j-(int)(1+(j/8.0));
const int expwidth = MISCMATHS::Max((endst - stst)/2,1);
const int exppow = 2;
for(j = stst; j <= endst; j++)
{
acEst(j,i) = acEst(j,i)*exp(-MISCMATHS::pow((j-stst)/float(expwidth),int(exppow)));
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
cerr << " Completed" << endl;
}
void AutoCorrEstimator::applyConstraints() {
Tracer tr("AutoCorrEstimator::applyConstraints");
cerr << "Applying constraints to AutoCorr estimates... ";
for(int i = 1; i <= xdata.getNumSeries(); i++)
{
int sizeTS = xdata.getNumVolumes();
int j = 3;
int stopat = (int)sizeTS/4;
// found1 is last valid value above threshold
int found1 = stopat;
// 5% point of distribution of autocorr about zero
const float thresh = (-1/sizeTS)+(2/sqrt(sizeTS));
acEst(2,i) = (acEst(2,i)+ acEst(3,i))/2;
if(acEst(2,i) < 0)
{
acEst(2,i) = 0;
}
else
{
float grad = 0.0;
while(j <= stopat && j < found1 + 2)
{
grad = ((acEst(j,i) + acEst(j+1,i))/2 - acEst(j-1,i))/1.5;
if(grad < 0)
acEst(j,i) = grad + acEst(j-1,i);
else
acEst(j,i) = acEst(j-1,i);
// look for threshold
if(acEst(j,i) < thresh/3.0 && found1 == stopat)
{
found1 = j;
}
if(acEst(j,i) < 0)
{
acEst(j,i) = 0;
}
j++;
}
}
// set rest to zero:
for(; j <= sizeTS; j++)
{
acEst(j,i) = 0;
}
}
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getMeanEstimate(ColumnVector& ret)
{
Tracer tr("AutoCorrEstimator::getMeanEstimate");
ret.ReSize(acEst.getNumVolumes());
// Calc global Vrow:
for(int i = 1; i <= acEst.getNumVolumes(); i++)
{
ret(i) = MISCMATHS::mean(ColumnVector(acEst.getVolume(i).AsColumn())).AsScalar();