Newer
Older
/* AutoCorrEstimator.cc
Mark Woolrich, FMRIB Image Analysis Group
Copyright (C) 1999-2000 University of Oxford */
#include "miscmaths/miscmaths.h"
#include "utils/log.h"
void AutoCorrEstimator::setDesignMatrix(const Matrix& dm) {
Tracer tr("AutoCorrEstimator::setDesignMatrix");
int numPars = dm.Ncols();
dminFFTReal.ReSize(zeropad, numPars);
dminFFTImag.ReSize(zeropad, numPars);
ColumnVector dmrow;
dmrow.ReSize(zeropad);
ColumnVector dm_fft_real, dm_fft_imag;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
// FFT design matrix
for(int k = 1; k <= numPars; k++)
{
dummy = 0;
dmrow = 0;
dm_mn(k) = MISCMATHS::mean(ColumnVector(dm.Column(k))).AsScalar();
dmrow.Rows(1,sizeTS) = dm.Column(k) - dm_mn(k);
FFT(dmrow, dummy, dm_fft_real, dm_fft_imag);
dminFFTImag.Column(k) = dm_fft_imag;
dminFFTReal.Column(k) = dm_fft_real;
}
}
void AutoCorrEstimator::preWhiten(ColumnVector& in, ColumnVector& ret, int i, Matrix& dmret, bool highfreqremovalonly) {
Tracer tr("AutoCorrEstimator::preWhiten");
int numPars = dminFFTReal.getNumSeries();
ret.ReSize(sizeTS);
dmret.ReSize(sizeTS, numPars);
// FFT auto corr estimate
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.Column(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.Column(i).Rows(2, sizeTS/2).Reverse();
float norm = ac_fft_real.SumSquare();
// Compare with raw FFT to detect high frequency artefacts:
bool violate = false;
ColumnVector violators(zeropad);
violators = 1;
for(int j = 1; j <= zeropad; j++)
{
if(highfreqremovalonly)
{
E(j,i) = sqrt(E(j,i)/((ac_fft_real(j)*ac_fft_real(j))/norm));
// look for high frequency artefacts
if(E(j,i) > 4 && j > zeropad/4 && j < 3*zeropad/4)
{
violate = true;
violators(j) = 0;
countLargeE(j) = countLargeE(j) + 1;
}
// FFT x data
dummy = 0;
xrow = 0;
xrow.Rows(1,sizeTS) = in;
FFT(xrow, dummy, x_fft_real, x_fft_im);
ac_fft_real = violators;
}
else
{
// inverse auto corr to give prewhitening filter
// no DC component so set first value to 0
ac_fft_real(1) = 0.0;
for(int j = 2; j <= zeropad; j++)
{
ac_fft_real(j) = 1.0/sqrt(fabs(ac_fft_real(j)));
// normalise ac_fft such that sum(j)(ac_fft_real)^2 = 1
ac_fft_real /= sqrt(ac_fft_real.SumSquare()/zeropad);
// filter design matrix
for(int k = 1; k <= numPars; k++)
{
dm_fft_real = dminFFTReal.getSeries(k);
dm_fft_imag = dminFFTImag.getSeries(k);
FFTI(SP(ac_fft_real, dm_fft_real), SP(ac_fft_real, dm_fft_imag), realifft, dummy);
// place result into ret:
dmret.Column(k) = realifft.Rows(1,sizeTS) + dm_mn(k);
//float std = pow(MISCMATHS::var(ColumnVector(dmret.Column(k))),0.5);
//dmret.Column(k) = (dmret.Column(k)/std) + mn(k);
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
FFTI(SP(ac_fft_real, x_fft_real), SP(ac_fft_real, x_fft_im), realifft, dummy);
// place result into ret:
ret = realifft.Rows(1,sizeTS);
}
void AutoCorrEstimator::preWhiten(VolumeSeries& in, VolumeSeries& ret)
{
Tracer tr("AutoCorrEstimator::preWhiten");
cerr << "Prewhitening... ";
ret.ReSize(sizeTS, numTS);
// make sure p_vrow is cyclic (even function)
ColumnVector vrow, xrow;
vrow.ReSize(zeropad);
xrow.ReSize(zeropad);
ColumnVector x_fft_real, ac_fft_real;
ColumnVector x_fft_im, ac_fft_im;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
int co = 1;
for(int i = 1; i <= numTS; i++)
{
// FFT auto corr estimate
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.Column(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.Column(i).Rows(2, sizeTS/2).Reverse();
// FFT x data
dummy = 0;
xrow = 0;
xrow.Rows(1,sizeTS/2) = in.getSeries(i).Rows(1,sizeTS/2);
xrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = in.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(xrow, dummy, x_fft_real, x_fft_im);
// inverse auto corr to give prewhitening filter:
// no DC component so set first value to 0;
ac_fft_real(1) = 0.0;
for(int j = 2; j <= zeropad; j++)
{
ac_fft_real(j) = 1.0/ac_fft_real(j);
}
// normalise ac_fft such that sum(j)(ac_fft_real)^2 = 1
ac_fft_real /= sqrt(ac_fft_real.SumSquare()/zeropad);
// Do filtering and inverse FFT:
FFTI(SP(ac_fft_real, x_fft_real), SP(ac_fft_real, x_fft_im), realifft, dummy);
// place result into ret:
ret.Column(i) = realifft.Rows(1,sizeTS);
if(co > 100)
{
co = 1;
cerr << (float)i/(float)numTS << ",";
}
else
co++;
}
cerr << " Completed" << endl;
}
Matrix AutoCorrEstimator::fitAutoRegressiveModel()
{
Tracer trace("AutoCorrEstimator::fitAutoRegressiveModel");
cerr << "Fitting autoregressive model..." << endl;
const int maxorder = 15;
const int minorder = 1;
// setup temp variables
ColumnVector x(sizeTS);
ColumnVector order(numTS);
VolumeSeries betas(maxorder, numTS);
betas = 0;
acEst.ReSize(sizeTS, numTS);
acEst = 0;
int co = 1;
for(int i = 1; i <= numTS; i++)
{
x = xdata.Column(i);
order(i) = pacf(x, minorder, maxorder, betastmp);
if(order(i) != -1)
{
// Calculate auto corr:
ColumnVector Krow(sizeTS);
Krow = 0;
Krow(sizeTS) = 1;
Krow.Rows(sizeTS-int(order(i)), sizeTS-1) = -betastmp.Rows(1,int(order(i))).Reverse();
betas.SubMatrix(1,int(order(i)),i,i) = betastmp.Rows(1,int(order(i)));
if(order(i)==1)
{
float arone = betastmp(1);
for(int k = 1; k <= sizeTS; k++)
{
Kinv(j,k) = MISCMATHS::pow(float(arone),int(abs(k-j)));
}
}
else
Kinv.SubMatrix(j,j,1,j) = Krow.Rows(sizeTS-j+1,sizeTS).t();
if(order(i)!=1)
Kinv = (Kinv.t()*Kinv).i();
acEst.SubMatrix(1,sizeTS/2+1,i,i) = (Kinv.SubMatrix(sizeTS/2, sizeTS/2, sizeTS/2, sizeTS)/Kinv.MaximumAbsoluteValue()).AsColumn();
co = 1;
cerr << (float)i/(float)numTS << ",";
}
write_ascii_matrix(LogSingleton::getInstance().appendDir("order"), order);
write_ascii_matrix(LogSingleton::getInstance().appendDir("betas"), betas);
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
int AutoCorrEstimator::pacf(const ColumnVector& x, int minorder, int maxorder, ColumnVector& betas)
{
Tracer ts("pacf");
int order = -1;
// Set c
Matrix c(1,1);
c(1,1) = 1;
Glm glm;
for(int i = minorder+1; i <= maxorder+1; i++)
{
ColumnVector y = x.Rows(i+1,sizeTS);
// Setup design matrix
Matrix X(sizeTS-i, i);
X = 0;
for(int j = 1; j <= i; j++)
{
X.Column(j) = x.Rows(i+1-j,sizeTS-j).AsColumn();
}
glm.setData(y, X, c);
glm.ComputeResids();
betas = glm.Getb();
if((abs(betas(i)) < (1/sizeTS) + (2/pow(sizeTS,0.5)) && order == -1)
|| i == maxorder+1)
{
order = i-1;
break;
}
}
return order;
}
int AutoCorrEstimator::establishUsanThresh(const ColumnVector& epivol)
int num = epivol.Nrows();
Histogram hist(epivol, num/200);
hist.generate();
float mode = hist.mode();
cerr << "mode = " << mode << endl;
float sum = 0.0;
int count = 0;
// Work out standard deviation from mode for values greater than mode:
for(int i = 1; i <= num; i++) {
if(epivol(i) > mode) {
sum += (epivol(i) - mode)*(epivol(i) - mode);
count++;
}
}
int sig = (int)pow(sum/num, 0.5);
cerr << "sig = " << sig << endl;
usanthresh = sig/3;
return usanthresh;
}
void AutoCorrEstimator::spatiallySmooth(const string& usanfname, const ColumnVector& epivol, int masksize, const string& epifname, int usan_thresh, int lag) {
Tracer trace("AutoCorrEstimator::spatiallySmooth");
cerr << "Warning: Number of voxels = " << numTS << ". Spatial smoothing of autocorrelation estimates is not carried out" << endl;
lag = MISCMATHS::Min(40,int(sizeTS/4));
if(usan_thresh == 0) usan_thresh = establishUsanThresh(epivol); // Establish epi thresh to use:
volume4D<float> susan_vol(mask.xsize(),mask.ysize(),mask.zsize(),1);
volume<float> usan_area(mask.xsize(),mask.ysize(),mask.zsize());
volume<float> usan_vol;
read_volume(usan_vol,usanfname);
volume<float> kernel;
kernel = gaussian_kernel3D(masksize,mask.xdim(),mask.ydim(),mask.zdim(),2.0);
cerr << "Spatially smoothing auto corr estimates" << endl;
for(int i=2 ; i <= lag; i++)
susan_vol.setmatrix(acEst.Row(i),mask);
susan_vol*=factor;
susan_vol[0]=susan_convolve(susan_vol[0],kernel,1,0,1,&usan_area,usan_vol,usan_thresh*usan_thresh);
susan_vol/=factor;
acEst.Row(i)=susan_vol.matrix(mask);
cerr << " Completed" << endl;
}
void AutoCorrEstimator::filter(const ColumnVector& filterFFT) {
Tracer tr("AutoCorrEstimator::filter");
cerr << "Combining temporal filtering effects with AutoCorr estimates... ";
// This function adjusts the autocorrelations as if the
// xdata has been filtered by the passed in filterFFT
// DOES NOT filter the xdata itself
ColumnVector vrow;
// make sure p_vrow is cyclic (even function)
vrow.ReSize(zeropad);
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
for(int i = 1; i <= numTS; i++)
vrow.Rows(1,sizeTS/2) = acEst.Column(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.Column(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, fft_real, fft_im);
FFTI(SP(fft_real, filterFFT), dummy, realifft, dummy);
// place result into acEst:
acEst.Column(i) = realifft.Rows(1,sizeTS)/realifft(1);
}
cerr << " Completed" << endl;
}
void AutoCorrEstimator::multitaper(int M) {
Tracer tr("AutoCorrEstimator::multitaper");
cerr << "Multitapering... ";
Matrix slepians;
getSlepians(M, sizeTS, slepians);
//LogSingleton::getInstance().out("slepians", slepians, false);
ColumnVector x(zeropad);
x = 0;
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector dummy2;
ColumnVector realifft(zeropad);
dummy = 0;
Matrix Sk(zeropad, slepians.Ncols());
acEst.ReSize(sizeTS, numTS);
acEst = 0;
for(int i = 1; i <= numTS; i++)
{
// Compute FFT for each slepian taper
for(int k = 1; k <= slepians.Ncols(); k++)
{
x.Rows(1,sizeTS) = SP(slepians.Column(k), xdata.Column(i));
FFT(x, dummy, fft_real, fft_im);
for(int j = 1; j <= zeropad; j++)
{
// (x+iy)(x-iy) = x^2 + y^2
fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
Sk(j,k) = fft_real(j);
}
}
// Pool multitaper FFTs
fft_im = 0;
for(int j = 1; j <= zeropad; j++)
{
fft_real(j) = MISCMATHS::mean(ColumnVector(Sk.Row(j).t())).AsScalar();
}
// IFFT to get autocorr
FFTI(fft_real, fft_im, realifft, dummy2);
//LogSingleton::getInstance().out("Sk", Sk, false);
//LogSingleton::getInstance().out("realifft", realifft);
//LogSingleton::getInstance().out("fftreal", fft_real);
float varx = MISCMATHS::var(ColumnVector(x.Rows(1,sizeTS))).AsScalar();
acEst.Column(i)=realifft.Rows(1,sizeTS)/varx;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getSlepians(int M, int sizeTS, Matrix& slepians) {
Tracer tr("AutoCorrEstimator::getSlepians");
slepians.ReSize(sizeTS, 2*M);
ifstream in;
ostringstream osc;
osc << sizeTS << "_" << M;
string fname("/usr/people/woolrich/parads/mt_" + osc.str());
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
in.open(fname.c_str(), ios::in);
if(!in)
throw Exception("Multitapering: Slepians file not found");
for(int j = 1; j <= sizeTS; j++)
{
for(int i = 1; i <= 2*M; i++)
{
in >> slepians(j,i);
}
}
in.close();
}
void AutoCorrEstimator::tukey(int M) {
Tracer tr("AutoCorrEstimator::tukey");
cerr << "Tukey M = " << M << endl;
cerr << "Tukey estimates... ";
ColumnVector window(M);
for(int j = 1; j <= M; j++)
{
window(j) = 0.5*(1+cos(M_PI*j/(float(M))));
}
for(int i = 1; i <= xdata.Ncols(); i++) {
acEst.SubMatrix(1,M,i,i) = SP(acEst.SubMatrix(1,M,i,i),window);
acEst.SubMatrix(M+1,sizeTS,i,i) = 0;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
void AutoCorrEstimator::pava() {
Tracer tr("AutoCorrEstimator::pava");
cerr << "Using New PAVA on AutoCorr estimates... ";
for(int i = 1; i <= numTS; i++) {
int stopat = (int)sizeTS/2;
// 5% point of distribution of autocorr about zero
const float th = (-1/sizeTS)+(2/sqrt(sizeTS));
ColumnVector values = acEst.Column(i);
ColumnVector zero(1);
zero = 0;
values = values.Rows(1,stopat) & zero;
ColumnVector gm(stopat + 1);
for(int j = 1; j <= stopat + 1; ++j)
gm(j) = j;
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
ColumnVector weights(stopat+1);
weights = 1;
bool anyviolators = true;
while(anyviolators) {
anyviolators = false;
for(int k = 2; k <= values.Nrows(); k++) {
if(values(k) > values(k-1)) {
anyviolators = true;
values(k-1) = (values(k-1)*weights(k-1) + values(k)*weights(k))/(weights(k-1) + weights(k));
values = values.Rows(1,k-1) & values.Rows(k+1,values.Nrows());
weights(k-1) = weights(k) + weights(k-1);
weights = weights.Rows(1,k-1) & weights.Rows(k+1,weights.Nrows());
for(int j = 1; j <= stopat + 1; j++) {
if(gm(j) >= k)
gm(j) = gm(j)-1;
}
break;
}
}
}
acEst.Column(i) = 0.0;
int j=1;
for(; j <= stopat; j++) {
if(acEst(j,i) <= 0.0)
{
acEst(j,i) = 0.0;
break;
}
}
if(acEst(2,i) < th/2)
{
acEst.SubMatrix(2,stopat,i,i) = 0;
}
else if(j > 2)
//if(j > 2)
int endst = j;
int stst = j-(int)(1+(j/8.0));
const int expwidth = MISCMATHS::Max((endst - stst)/2,1);
const int exppow = 2;
for(j = stst; j <= endst; j++)
{
acEst(j,i) = acEst(j,i)*exp(-MISCMATHS::pow((j-stst)/float(expwidth),int(exppow)));
cerr << " Completed" << endl;
}
void AutoCorrEstimator::applyConstraints() {
Tracer tr("AutoCorrEstimator::applyConstraints");
cerr << "Applying constraints to AutoCorr estimates... ";
for(int i = 1; i <= numTS; i++)
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
{
int j = 3;
int stopat = (int)sizeTS/4;
// found1 is last valid value above threshold
int found1 = stopat;
// 5% point of distribution of autocorr about zero
const float thresh = (-1/sizeTS)+(2/sqrt(sizeTS));
acEst(2,i) = (acEst(2,i)+ acEst(3,i))/2;
if(acEst(2,i) < 0)
{
acEst(2,i) = 0;
}
else
{
float grad = 0.0;
while(j <= stopat && j < found1 + 2)
{
grad = ((acEst(j,i) + acEst(j+1,i))/2 - acEst(j-1,i))/1.5;
if(grad < 0)
acEst(j,i) = grad + acEst(j-1,i);
else
acEst(j,i) = acEst(j-1,i);
// look for threshold
if(acEst(j,i) < thresh/3.0 && found1 == stopat)
{
found1 = j;
}
if(acEst(j,i) < 0)
{
acEst(j,i) = 0;
}
j++;
}
}
// set rest to zero:
for(; j <= sizeTS; j++)
{
acEst(j,i) = 0;
}
}
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getMeanEstimate(ColumnVector& ret)
{
Tracer tr("AutoCorrEstimator::getMeanEstimate");
ret.ReSize(acEst.Nrows());
for(int i = 1; i <= acEst.Nrows(); i++)
ret(i) = MISCMATHS::mean(ColumnVector(acEst.Row(i).AsColumn())).AsScalar();