Newer
Older
Mark Woolrich and Matthew Webster, FMRIB Image Analysis Group
Copyright (C) 1999-2008 University of Oxford */
void AutoCorrEstimator::setDesignMatrix(const Matrix& dm) {
Tracer tr("AutoCorrEstimator::setDesignMatrix");
int numPars = dm.Ncols();
dminFFTReal.ReSize(zeropad, numPars);
dminFFTImag.ReSize(zeropad, numPars);
ColumnVector dmrow;
dmrow.ReSize(zeropad);
ColumnVector dm_fft_real, dm_fft_imag;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
// FFT design matrix
for(int k = 1; k <= numPars; k++)
{
dummy = 0;
dmrow = 0;
dm_mn(k) = MISCMATHS::mean(ColumnVector(dm.Column(k))).AsScalar();
dmrow.Rows(1,sizeTS) = dm.Column(k) - dm_mn(k);
FFT(dmrow, dummy, dm_fft_real, dm_fft_imag);
dminFFTImag.Column(k) = dm_fft_imag;
dminFFTReal.Column(k) = dm_fft_real;
}
}
void AutoCorrEstimator::preWhiten(ColumnVector& in, ColumnVector& ret, int i, Matrix& dmret, bool highfreqremovalonly) {
int numPars = dminFFTReal.Ncols();
ret.ReSize(sizeTS);
dmret.ReSize(sizeTS, numPars);
// FFT auto corr estimate
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.Column(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.Column(i).Rows(2, sizeTS/2).Reverse();
float norm = ac_fft_real.SumSquare();
// Compare with raw FFT to detect high frequency artefacts:
bool violate = false;
ColumnVector violators(zeropad);
violators = 1;
for(int j = 1; j <= zeropad; j++)
{
if(highfreqremovalonly)
{
E(j,i) = sqrt(E(j,i)/((ac_fft_real(j)*ac_fft_real(j))/norm));
// look for high frequency artefacts
if(E(j,i) > 4 && j > zeropad/4 && j < 3*zeropad/4)
{
violate = true;
violators(j) = 0;
countLargeE(j) = countLargeE(j) + 1;
}
// FFT x data
dummy = 0;
xrow = 0;
xrow.Rows(1,sizeTS) = in;
FFT(xrow, dummy, x_fft_real, x_fft_im);
ac_fft_real = violators;
}
else
{
// inverse auto corr to give prewhitening filter
// no DC component so set first value to 0
ac_fft_real(1) = 0.0;
for(int j = 2; j <= zeropad; j++)
{
ac_fft_real(j) = 1.0/sqrt(fabs(ac_fft_real(j)));
// normalise ac_fft such that sum(j)(ac_fft_real)^2 = 1
ac_fft_real /= sqrt(ac_fft_real.SumSquare()/zeropad);
// filter design matrix
for(int k = 1; k <= numPars; k++)
{
dm_fft_real = dminFFTReal.Column(k);
dm_fft_imag = dminFFTImag.Column(k);
FFTI(SP(ac_fft_real, dm_fft_real), SP(ac_fft_real, dm_fft_imag), realifft, dummy);
// place result into ret:
dmret.Column(k) = realifft.Rows(1,sizeTS) + dm_mn(k);
//float std = pow(MISCMATHS::var(ColumnVector(dmret.Column(k))),0.5);
//dmret.Column(k) = (dmret.Column(k)/std) + mn(k);
FFTI(SP(ac_fft_real, x_fft_real), SP(ac_fft_real, x_fft_im), realifft, dummy);
// place result into ret:
ret = realifft.Rows(1,sizeTS);
}
Matrix AutoCorrEstimator::fitAutoRegressiveModel()
{
Tracer trace("AutoCorrEstimator::fitAutoRegressiveModel");
cerr << "Fitting autoregressive model..." << endl;
const int maxorder = 15;
const int minorder = 1;
// setup temp variables
ColumnVector x(sizeTS);
ColumnVector order(numTS);
Matrix betas(maxorder, numTS);
acEst.ReSize(sizeTS, numTS);
acEst = 0;
int co = 1;
for(int i = 1; i <= numTS; i++)
{
x = xdata.Column(i);
order(i) = pacf(x, minorder, maxorder, betastmp);
if(order(i) != -1)
{
// Calculate auto corr:
ColumnVector Krow(sizeTS);
Krow = 0;
Krow(sizeTS) = 1;
Krow.Rows(sizeTS-int(order(i)), sizeTS-1) = -betastmp.Rows(1,int(order(i))).Reverse();
betas.SubMatrix(1,int(order(i)),i,i) = betastmp.Rows(1,int(order(i)));
if(order(i)==1)
{
float arone = betastmp(1);
for(int k = 1; k <= sizeTS; k++)
{
Kinv(j,k) = MISCMATHS::pow(float(arone),int(abs(k-j)));
}
}
else
Kinv.SubMatrix(j,j,1,j) = Krow.Rows(sizeTS-j+1,sizeTS).t();
if(order(i)!=1)
Kinv = (Kinv.t()*Kinv).i();
acEst.SubMatrix(1,sizeTS/2+1,i,i) = (Kinv.SubMatrix(sizeTS/2, sizeTS/2, sizeTS/2, sizeTS)/Kinv.MaximumAbsoluteValue()).AsColumn();
co = 1;
cerr << (float)i/(float)numTS << ",";
}
write_ascii_matrix(LogSingleton::getInstance().appendDir("order"), order);
write_ascii_matrix(LogSingleton::getInstance().appendDir("betas"), betas);
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
int AutoCorrEstimator::pacf(const ColumnVector& x, int minorder, int maxorder, ColumnVector& betas)
{
Tracer ts("pacf");
int order = -1;
// Set c
Matrix c(1,1);
c(1,1) = 1;
Glm glm;
for(int i = minorder+1; i <= maxorder+1; i++)
{
ColumnVector y = x.Rows(i+1,sizeTS);
// Setup design matrix
Matrix X(sizeTS-i, i);
X = 0;
for(int j = 1; j <= i; j++)
{
X.Column(j) = x.Rows(i+1-j,sizeTS-j).AsColumn();
}
glm.setData(y, X, c);
glm.ComputeResids();
betas = glm.Getb();
if((abs(betas(i)) < (1/sizeTS) + (2/pow(sizeTS,0.5)) && order == -1)
|| i == maxorder+1)
{
order = i-1;
break;
}
}
return order;
}
int AutoCorrEstimator::establishUsanThresh(const ColumnVector& epivol)
int num = epivol.Nrows();
Histogram hist(epivol, num/200);
hist.generate();
float mode = hist.mode();
cerr << "mode = " << mode << endl;
float sum = 0.0;
int count = 0;
// Work out standard deviation from mode for values greater than mode:
for(int i = 1; i <= num; i++) {
if(epivol(i) > mode) {
sum += (epivol(i) - mode)*(epivol(i) - mode);
count++;
}
}
int sig = (int)pow(sum/num, 0.5);
cerr << "sig = " << sig << endl;
usanthresh = sig/3;
return usanthresh;
}
void AutoCorrEstimator::spatiallySmooth(const string& usanfname, const ColumnVector& epivol, int masksize, const string& epifname, int usan_thresh, int lag) {
Tracer trace("AutoCorrEstimator::spatiallySmooth");
cerr << "Warning: Number of voxels = " << numTS << ". Spatial smoothing of autocorrelation estimates is not carried out" << endl;
lag = MISCMATHS::Min(40,int(sizeTS/4));
if(usan_thresh == 0) usan_thresh = establishUsanThresh(epivol); // Establish epi thresh to use:
volume4D<float> susan_vol(mask.xsize(),mask.ysize(),mask.zsize(),1);
volume<float> usan_area(mask.xsize(),mask.ysize(),mask.zsize());
volume<float> usan_vol;
read_volume(usan_vol,usanfname);
volume<float> kernel;
kernel = gaussian_kernel3D(masksize,mask.xdim(),mask.ydim(),mask.zdim(),2.0);
cerr << "Spatially smoothing auto corr estimates" << endl;
for(int i=2 ; i <= lag; i++)
susan_vol.setmatrix(acEst.Row(i),mask);
susan_vol*=factor;
susan_vol[0]=susan_convolve(susan_vol[0],kernel,1,0,1,&usan_area,usan_vol,usan_thresh*usan_thresh);
susan_vol/=factor;
acEst.Row(i)=susan_vol.matrix(mask);
cerr << " Completed" << endl;
}
void AutoCorrEstimator::filter(const ColumnVector& filterFFT) {
Tracer tr("AutoCorrEstimator::filter");
cerr << "Combining temporal filtering effects with AutoCorr estimates... ";
// This function adjusts the autocorrelations as if the
// xdata has been filtered by the passed in filterFFT
// DOES NOT filter the xdata itself
ColumnVector vrow;
// make sure p_vrow is cyclic (even function)
vrow.ReSize(zeropad);
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
for(int i = 1; i <= numTS; i++)
vrow.Rows(1,sizeTS/2) = acEst.Column(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.Column(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, fft_real, fft_im);
FFTI(SP(fft_real, filterFFT), dummy, realifft, dummy);
// place result into acEst:
acEst.Column(i) = realifft.Rows(1,sizeTS)/realifft(1);
}
cerr << " Completed" << endl;
}
void AutoCorrEstimator::multitaper(int M) {
Tracer tr("AutoCorrEstimator::multitaper");
cerr << "Multitapering... ";
Matrix slepians;
getSlepians(M, sizeTS, slepians);
//LogSingleton::getInstance().out("slepians", slepians, false);
ColumnVector x(zeropad);
x = 0;
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector dummy2;
ColumnVector realifft(zeropad);
dummy = 0;
Matrix Sk(zeropad, slepians.Ncols());
acEst.ReSize(sizeTS, numTS);
acEst = 0;
for(int i = 1; i <= numTS; i++)
{
// Compute FFT for each slepian taper
for(int k = 1; k <= slepians.Ncols(); k++)
{
x.Rows(1,sizeTS) = SP(slepians.Column(k), xdata.Column(i));
FFT(x, dummy, fft_real, fft_im);
for(int j = 1; j <= zeropad; j++)
{
// (x+iy)(x-iy) = x^2 + y^2
fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
Sk(j,k) = fft_real(j);
}
}
// Pool multitaper FFTs
fft_im = 0;
for(int j = 1; j <= zeropad; j++)
{
fft_real(j) = MISCMATHS::mean(ColumnVector(Sk.Row(j).t())).AsScalar();
}
// IFFT to get autocorr
FFTI(fft_real, fft_im, realifft, dummy2);
//LogSingleton::getInstance().out("Sk", Sk, false);
//LogSingleton::getInstance().out("realifft", realifft);
//LogSingleton::getInstance().out("fftreal", fft_real);
float varx = MISCMATHS::var(ColumnVector(x.Rows(1,sizeTS))).AsScalar();
acEst.Column(i)=realifft.Rows(1,sizeTS)/varx;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getSlepians(int M, int sizeTS, Matrix& slepians) {
Tracer tr("AutoCorrEstimator::getSlepians");
slepians.ReSize(sizeTS, 2*M);
ifstream in;
ostringstream osc;
osc << sizeTS << "_" << M;
string fname("/usr/people/woolrich/parads/mt_" + osc.str());
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
in.open(fname.c_str(), ios::in);
if(!in)
throw Exception("Multitapering: Slepians file not found");
for(int j = 1; j <= sizeTS; j++)
{
for(int i = 1; i <= 2*M; i++)
{
in >> slepians(j,i);
}
}
in.close();
}
void AutoCorrEstimator::tukey(int M) {
Tracer tr("AutoCorrEstimator::tukey");
cerr << "Tukey M = " << M << endl;
cerr << "Tukey estimates... ";
ColumnVector window(M);
for(int j = 1; j <= M; j++)
{
window(j) = 0.5*(1+cos(M_PI*j/(float(M))));
}
for(int i = 1; i <= xdata.Ncols(); i++) {
acEst.SubMatrix(1,M,i,i) = SP(acEst.SubMatrix(1,M,i,i),window);
acEst.SubMatrix(M+1,sizeTS,i,i) = 0;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
void AutoCorrEstimator::pava() {
Tracer tr("AutoCorrEstimator::pava");
cerr << "Using New PAVA on AutoCorr estimates... ";
for(int i = 1; i <= numTS; i++) {
int stopat = (int)sizeTS/2;
// 5% point of distribution of autocorr about zero
const float th = (-1/sizeTS)+(2/sqrt(sizeTS));
ColumnVector values = acEst.Column(i);
ColumnVector zero(1);
zero = 0;
values = values.Rows(1,stopat) & zero;
ColumnVector gm(stopat + 1);
for(int j = 1; j <= stopat + 1; ++j)
gm(j) = j;
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
ColumnVector weights(stopat+1);
weights = 1;
bool anyviolators = true;
while(anyviolators) {
anyviolators = false;
for(int k = 2; k <= values.Nrows(); k++) {
if(values(k) > values(k-1)) {
anyviolators = true;
values(k-1) = (values(k-1)*weights(k-1) + values(k)*weights(k))/(weights(k-1) + weights(k));
values = values.Rows(1,k-1) & values.Rows(k+1,values.Nrows());
weights(k-1) = weights(k) + weights(k-1);
weights = weights.Rows(1,k-1) & weights.Rows(k+1,weights.Nrows());
for(int j = 1; j <= stopat + 1; j++) {
if(gm(j) >= k)
gm(j) = gm(j)-1;
}
break;
}
}
}
acEst.Column(i) = 0.0;
int j=1;
for(; j <= stopat; j++) {
if(acEst(j,i) <= 0.0)
{
acEst(j,i) = 0.0;
break;
}
}
if(acEst(2,i) < th/2)
{
acEst.SubMatrix(2,stopat,i,i) = 0;
}
else if(j > 2)
//if(j > 2)
int endst = j;
int stst = j-(int)(1+(j/8.0));
const int expwidth = MISCMATHS::Max((endst - stst)/2,1);
const int exppow = 2;
for(j = stst; j <= endst; j++)
{
acEst(j,i) = acEst(j,i)*exp(-MISCMATHS::pow((j-stst)/float(expwidth),int(exppow)));
cerr << " Completed" << endl;
}
void AutoCorrEstimator::applyConstraints() {
Tracer tr("AutoCorrEstimator::applyConstraints");
cerr << "Applying constraints to AutoCorr estimates... ";
for(int i = 1; i <= numTS; i++)
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
{
int j = 3;
int stopat = (int)sizeTS/4;
// found1 is last valid value above threshold
int found1 = stopat;
// 5% point of distribution of autocorr about zero
const float thresh = (-1/sizeTS)+(2/sqrt(sizeTS));
acEst(2,i) = (acEst(2,i)+ acEst(3,i))/2;
if(acEst(2,i) < 0)
{
acEst(2,i) = 0;
}
else
{
float grad = 0.0;
while(j <= stopat && j < found1 + 2)
{
grad = ((acEst(j,i) + acEst(j+1,i))/2 - acEst(j-1,i))/1.5;
if(grad < 0)
acEst(j,i) = grad + acEst(j-1,i);
else
acEst(j,i) = acEst(j-1,i);
// look for threshold
if(acEst(j,i) < thresh/3.0 && found1 == stopat)
{
found1 = j;
}
if(acEst(j,i) < 0)
{
acEst(j,i) = 0;
}
j++;
}
}
// set rest to zero:
for(; j <= sizeTS; j++)
{
acEst(j,i) = 0;
}
}
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getMeanEstimate(ColumnVector& ret)
{
Tracer tr("AutoCorrEstimator::getMeanEstimate");
ret.ReSize(acEst.Nrows());
for(int i = 1; i <= acEst.Nrows(); i++)
ret(i) = MISCMATHS::mean(ColumnVector(acEst.Row(i).AsColumn())).AsScalar();