Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fslpy
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Analyze
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
fslpy
Commits
5f67d58c
Commit
5f67d58c
authored
5 years ago
by
Paul McCarthy
Browse files
Options
Downloads
Patches
Plain Diff
TEST: Expand resample tests
parent
4e0acb87
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tests/test_image_resample.py
+168
-133
168 additions, 133 deletions
tests/test_image_resample.py
with
168 additions
and
133 deletions
tests/test_image_resample.py
+
168
−
133
View file @
5f67d58c
...
@@ -2,7 +2,6 @@
...
@@ -2,7 +2,6 @@
import
itertools
as
it
import
itertools
as
it
import
os.path
as
op
import
numpy
as
np
import
numpy
as
np
import
pytest
import
pytest
...
@@ -10,181 +9,217 @@ import pytest
...
@@ -10,181 +9,217 @@ import pytest
import
fsl.data.image
as
fslimage
import
fsl.data.image
as
fslimage
import
fsl.utils.transform
as
transform
import
fsl.utils.transform
as
transform
import
fsl.utils.image.resample
as
resample
import
fsl.utils.image.resample
as
resample
from
fsl.utils.tempdir
import
tempdir
from
.
import
make_random_image
from
.
import
make_random_image
def
test_resample
(
seed
):
def
test_resample
(
seed
):
with
tempdir
()
as
td
:
# Random base image shapes
for
i
in
range
(
25
):
fname
=
op
.
join
(
td
,
'
test.nii
'
)
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
img
=
fslimage
.
Image
(
make_random_image
(
dims
=
shape
))
# Random base image shapes
# bad shape
for
i
in
range
(
25
):
with
pytest
.
raises
(
ValueError
):
resample
.
resample
(
img
,
(
10
,
10
))
with
pytest
.
raises
(
ValueError
):
resample
.
resample
(
img
,
(
10
,
10
,
10
,
10
))
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
# resampling to the same shape should be a no-op
make_random_image
(
fname
,
shape
)
samei
,
samex
=
resample
.
resample
(
img
,
shape
)
img
=
fslimage
.
Image
(
fname
,
mmap
=
False
)
assert
np
.
all
(
samei
==
img
[:])
assert
np
.
all
(
samex
==
img
.
voxToWorldMat
)
# bad shape
# Random resampled image shapes
with
pytest
.
raises
(
ValueError
):
for
j
in
range
(
10
):
resample
.
resample
(
img
,
(
10
,
10
))
with
pytest
.
raises
(
ValueError
):
resample
.
resample
(
img
,
(
10
,
10
,
10
,
10
))
# resampling to the same shape should be a no-op
rshape
=
np
.
random
.
randint
(
5
,
50
,
3
)
samei
,
samex
=
resample
.
resample
(
img
,
shape
)
resampled
,
xf
=
resample
.
resample
(
img
,
rshape
,
order
=
0
)
assert
np
.
all
(
samei
==
img
[:])
assert
np
.
all
(
samex
==
img
.
voxToWorldMat
)
# Random resampled image shapes
assert
tuple
(
resampled
.
shape
)
==
tuple
(
rshape
)
for
j
in
range
(
10
):
rshape
=
np
.
random
.
randint
(
5
,
50
,
3
)
# We used nearest neighbour interp, so the
resampled
,
xf
=
resample
.
resample
(
img
,
rshape
,
order
=
0
)
# values in the resampled image should match
# corresponding values in the original. Let's
# check some whynot.
restestcoords
=
np
.
array
([
np
.
random
.
randint
(
0
,
rshape
[
0
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
1
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
2
],
100
)]).
T
img
.
save
(
'
base.nii.gz
'
)
resx
,
resy
,
resz
=
restestcoords
.
T
fslimage
.
Image
(
resampled
,
xform
=
xf
,
resvals
=
resampled
[
resx
,
resy
,
resz
]
mmap
=
False
).
save
(
'
res.nii.gz
'
)
assert
tuple
(
resampled
.
shape
)
==
tuple
(
rshape
)
res2orig
=
transform
.
concat
(
img
.
worldToVoxMat
,
xf
)
# We used nearest neighbour interp, so the
origtestcoords
=
transform
.
transform
(
restestcoords
,
res2orig
)
# values in the resampled image should match
# corresponding values in the original. Let's
# check some whynot.
restestcoords
=
np
.
array
([
np
.
random
.
randint
(
0
,
rshape
[
0
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
1
],
100
),
np
.
random
.
randint
(
0
,
rshape
[
2
],
100
)]).
T
resx
,
resy
,
resz
=
restestcoords
.
T
# remove any coordinates which are out of
resvals
=
resampled
[
resx
,
resy
,
resz
]
# bounds in the original image space, or
# are right on a voxel boundary (where the
# nn interp could have gone either way), or
# have value == 0 in the resampled space.
out
=
((
origtestcoords
<
0
)
|
(
origtestcoords
>=
shape
-
0.5
)
|
(
np
.
isclose
(
np
.
modf
(
origtestcoords
)[
0
],
0.5
)))
out
=
np
.
any
(
out
,
axis
=
1
)
|
(
resvals
==
0
)
res2orig
=
transform
.
concat
(
img
.
worldToVoxMat
,
xf
)
origtestcoords
=
np
.
array
(
origtestcoords
.
round
(),
dtype
=
np
.
int
)
origtestcoords
=
transform
.
transform
(
restestcoords
,
res2orig
)
origtestcoords
=
origtestcoords
[
~
out
,
:]
restestcoords
=
restestcoords
[
~
out
,
:]
# remove any coordinates which are out of
resx
,
resy
,
resz
=
restestcoords
.
T
# bounds in the original image space, or
origx
,
origy
,
origz
=
origtestcoords
.
T
# are right on a voxel boundary (where the
# nn interp could have gone either way), or
# have value == 0 in the resampled space.
out
=
((
origtestcoords
<
0
)
|
(
origtestcoords
>=
shape
-
0.5
)
|
(
np
.
isclose
(
np
.
modf
(
origtestcoords
)[
0
],
0.5
)))
out
=
np
.
any
(
out
,
axis
=
1
)
|
(
resvals
==
0
)
origtestcoords
=
np
.
array
(
origtestcoords
.
round
(),
dtype
=
np
.
int
)
origvals
=
img
[:][
origx
,
origy
,
origz
]
resvals
=
resampled
[
resx
,
resy
,
resz
]
origtestcoords
=
origtestcoords
[
~
out
,
:]
assert
np
.
all
(
np
.
isclose
(
resvals
,
origvals
))
restestcoords
=
restestcoords
[
~
out
,
:]
resx
,
resy
,
resz
=
restestcoords
.
T
origx
,
origy
,
origz
=
origtestcoords
.
T
origvals
=
img
[:][
origx
,
origy
,
origz
]
def
test_resample_4d
(
seed
):
resvals
=
resampled
[
resx
,
resy
,
resz
]
assert
np
.
all
(
np
.
isclose
(
resvals
,
origvals
))
# resample one volume
img
=
fslimage
.
Image
(
make_random_image
(
dims
=
(
10
,
10
,
10
,
10
)))
slc
=
(
slice
(
None
),
slice
(
None
),
slice
(
None
),
3
)
resampled
=
resample
.
resample
(
img
,
img
.
shape
[:
3
],
slc
)[
0
]
assert
np
.
all
(
resampled
==
img
[...,
3
])
del
img
# resample up
img
=
None
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
)
# resample down
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
)
def
test_resample_4d
(
seed
):
# resample the entire image
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
,
10
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
10
)
fname
=
'
test.nii.gz
'
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
,
10
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
10
)
with
tempdir
():
# resample along the fourth dim
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
,
15
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
15
)
make_random_image
(
fname
,
(
10
,
10
,
10
,
10
))
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
,
15
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
15
)
# resample one volume
img
=
fslimage
.
Image
(
fname
)
slc
=
(
slice
(
None
),
slice
(
None
),
slice
(
None
),
3
)
resampled
=
resample
.
resample
(
img
,
img
.
shape
[:
3
],
slc
)[
0
]
assert
np
.
all
(
resampled
==
img
[...,
3
])
# resample up
def
test_resample_origin
(
seed
):
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
)
# resample down
img
=
fslimage
.
Image
(
make_random_image
(
dims
=
(
10
,
10
,
10
)))
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
),
slc
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
)
# with origin='corner', image
# bounding boxes should match
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
resample
.
resample
(
img
,
shape
,
origin
=
'
corner
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
imgb
=
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
)
resb
=
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
)
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='centre' image
# bounding boxes should be offset
# by (size_resampled - size_orig) / 2
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
resample
.
resample
(
img
,
shape
,
origin
=
'
centre
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
off
=
(
np
.
array
(
img
.
shape
)
/
np
.
array
(
res
.
shape
)
-
1
)
/
2
imgb
=
np
.
array
(
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
))
resb
=
np
.
array
(
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
))
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
+
off
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='corner', using
# linear interp, when we down-
# sample an image to a shape
# that divides evenly into the
# original shape, a downsampled
# voxel should equal the average
# of the original voxels inside
# it.
res
=
resample
.
resample
(
img
,
(
5
,
5
,
5
),
smooth
=
False
,
origin
=
'
corner
'
)[
0
]
for
x
,
y
,
z
in
it
.
product
(
range
(
5
),
range
(
5
),
range
(
5
)):
block
=
img
[
x
*
2
:
x
*
2
+
2
,
y
*
2
:
y
*
2
+
2
,
z
*
2
:
z
*
2
+
2
]
assert
np
.
isclose
(
res
[
x
,
y
,
z
],
block
.
mean
())
# resample the entire image
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
,
10
),
None
)[
0
]
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
10
)
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
,
10
),
None
)[
0
]
def
test_resampleToPixdims
():
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
10
)
# resample along the fourth dim
img
=
fslimage
.
Image
(
make_random_image
(
dims
=
(
10
,
10
,
10
)))
resampled
=
resample
.
resample
(
img
,
(
15
,
15
,
15
,
15
),
None
)[
0
]
imglo
,
imghi
=
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
)
assert
tuple
(
resampled
.
shape
)
==
(
15
,
15
,
15
,
15
)
oldpix
=
np
.
array
(
img
.
pixdim
,
dtype
=
np
.
float
)
oldshape
=
np
.
array
(
img
.
shape
,
dtype
=
np
.
float
)
resampled
=
resample
.
resample
(
img
,
(
5
,
5
,
5
,
15
),
None
)[
0
]
for
i
,
origin
in
it
.
product
(
range
(
25
),
(
'
centre
'
,
'
corner
'
)):
assert
tuple
(
resampled
.
shape
)
==
(
5
,
5
,
5
,
15
)
del
img
# random pixdims in the range 0.1 - 5.0
del
resampled
newpix
=
0.1
+
4.9
*
np
.
random
.
random
(
3
)
img
=
None
expshape
=
np
.
round
(
oldshape
*
(
oldpix
/
newpix
))
resampled
=
None
res
=
resample
.
resampleToPixdims
(
img
,
newpix
,
origin
=
origin
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
reslo
,
reshi
=
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
)
resfov
=
reshi
-
reslo
expfov
=
newpix
*
res
.
shape
def
test_resample_origin
(
seed
):
assert
np
.
all
(
np
.
isclose
(
res
.
shape
,
expshape
))
with
tempdir
()
as
td
:
assert
np
.
all
(
np
.
isclose
(
res
.
pixdim
,
newpix
))
fname
=
op
.
join
(
td
,
'
test.nii
'
)
assert
np
.
all
(
np
.
isclose
(
resfov
,
expfov
,
rtol
=
1e-2
,
atol
=
1e-2
))
make_random_image
(
fname
,
(
10
,
10
,
10
))
img
=
fslimage
.
Image
(
fname
)
# with origin='corner', image
# bounding boxes should match
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
resample
.
resample
(
img
,
shape
,
origin
=
'
corner
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
imgb
=
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
)
resb
=
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
)
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='centre' image
# bounding boxes should be offset
# by (size_resampled - size_orig) / 2
for
i
in
range
(
25
):
shape
=
np
.
random
.
randint
(
5
,
50
,
3
)
res
=
resample
.
resample
(
img
,
shape
,
origin
=
'
centre
'
)
res
=
fslimage
.
Image
(
res
[
0
],
xform
=
res
[
1
])
off
=
(
np
.
array
(
img
.
shape
)
/
np
.
array
(
res
.
shape
)
-
1
)
/
2
imgb
=
np
.
array
(
transform
.
axisBounds
(
img
.
shape
,
img
.
voxToWorldMat
))
resb
=
np
.
array
(
transform
.
axisBounds
(
res
.
shape
,
res
.
voxToWorldMat
))
assert
np
.
all
(
np
.
isclose
(
imgb
,
resb
+
off
,
rtol
=
1e-5
,
atol
=
1e-5
))
# with origin='corner', using
# linear interp, when we down-
# sample an image to a shape
# that divides evenly into the
# original shape, a downsampled
# voxel should equal the average
# of the original voxels inside
# it.
res
=
resample
.
resample
(
img
,
(
5
,
5
,
5
),
smooth
=
False
,
origin
=
'
corner
'
)[
0
]
for
x
,
y
,
z
in
it
.
product
(
range
(
5
),
range
(
5
),
range
(
5
)):
block
=
img
[
x
*
2
:
x
*
2
+
2
,
y
*
2
:
y
*
2
+
2
,
z
*
2
:
z
*
2
+
2
]
assert
np
.
isclose
(
res
[
x
,
y
,
z
],
block
.
mean
())
if
origin
==
'
corner
'
:
assert
np
.
all
(
np
.
isclose
(
imglo
,
reslo
))
assert
np
.
all
(
np
.
isclose
(
reshi
,
reslo
+
expfov
,
rtol
=
1e-2
,
atol
=
1e-2
))
def
test_resampleToPixdims
():
pass
def
test_resampleToReference
():
def
test_resampleToReference
():
pass
def
random_v2w
():
return
transform
.
compose
(
0.25
+
4.75
*
np
.
random
.
random
(
3
),
-
50
+
100
*
np
.
random
.
random
(
3
),
-
np
.
pi
+
2
*
np
.
pi
*
np
.
random
.
random
(
3
))
# Basic test - output has same
# dimensions/space as reference
for
i
in
range
(
25
):
ishape
=
np
.
random
.
randint
(
5
,
50
,
3
)
rshape
=
np
.
random
.
randint
(
5
,
50
,
3
)
iv2w
=
random_v2w
()
rv2w
=
random_v2w
()
img
=
fslimage
.
Image
(
make_random_image
(
dims
=
ishape
,
xform
=
iv2w
))
ref
=
fslimage
.
Image
(
make_random_image
(
dims
=
rshape
,
xform
=
rv2w
))
res
=
resample
.
resampleToReference
(
img
,
ref
)
res
=
fslimage
.
Image
(
res
[
0
],
header
=
ref
.
header
)
assert
res
.
sameSpace
(
ref
)
# More specific test - output
# data gets transformed correctly
# into reference space
img
=
np
.
zeros
((
5
,
5
,
5
),
dtype
=
np
.
float
)
img
[
1
,
1
,
1
]
=
1
img
=
fslimage
.
Image
(
img
)
refv2w
=
transform
.
scaleOffsetXform
([
1
,
1
,
1
],
[
-
1
,
-
1
,
-
1
])
ref
=
np
.
zeros
((
5
,
5
,
5
),
dtype
=
np
.
float
)
ref
=
fslimage
.
Image
(
ref
,
xform
=
refv2w
)
res
=
resample
.
resampleToReference
(
img
,
ref
,
order
=
0
)
exp
=
np
.
zeros
((
5
,
5
,
5
),
dtype
=
np
.
float
)
exp
[
2
,
2
,
2
]
=
1
assert
np
.
all
(
np
.
isclose
(
res
[
0
],
exp
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment