Skip to content
Snippets Groups Projects
fsl_glm.cc 11.6 KiB
Newer Older
/*  fsl_glm - 

    Christian F. Beckmann, FMRIB Image Analysis Group
    Copyright (C) 2006-2008 University of Oxford  */
/*  CCOPYRIGHT  */

#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include <vector>
#include "newimage/newimageall.h"
#include "melhlprfns.h"

using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;

// The two strings below specify the title and example usage that is
// printed out as the help or usage message

  string title=string("fsl_glm (Version 1.1)")+
		string("\nCopyright(c) 2004-2009, University of Oxford (Christian F. Beckmann)\n")+
Matthew Webster's avatar
Matthew Webster committed
    string(" \n Simple GLM allowing temporal or spatial regression on either text data or images\n");
Christian Beckmann's avatar
Christian Beckmann committed
  string examples="fsl_glm -i <input> -d <design> -o <output> [options]";

//Command line Options {
  Option<string> fnin(string("-i,--in"), string(""),
		string("        input file name (text matrix or 3D/4D image file)"),
		true, requires_argument);
  Option<string> fnout(string("-o,--out"), string(""),
		string("output file name for GLM parameter estimates (GLM betas)"),
Christian Beckmann's avatar
Christian Beckmann committed
		false, requires_argument);
  Option<string> fndesign(string("-d,--design"), string(""),
Matthew Webster's avatar
Matthew Webster committed
		string("file name of the GLM design matrix (text time courses for temporal regression or an image file for spatial regression )"),
Christian Beckmann's avatar
Christian Beckmann committed
		false, requires_argument);
  Option<string> fnmask(string("-m,--mask"), string(""),
		string("mask image file name if input is image"),
		false, requires_argument);
  Option<string> fncontrasts(string("-c,--contrasts"), string(""),
		string("matrix of t-statistics contrasts"),
		false, requires_argument);
  Option<string> fnftest(string("-f,--ftests"), string(""),
		string("matrix of F-tests on contrasts"),
		false, requires_argument,false);
Matthew Webster's avatar
Matthew Webster committed
	Option<int> dofset(string("--dof"),-1,
		string("        set degrees-of-freedom explicitly"),
		false, requires_argument);
	Option<bool> normdes(string("--des_norm"),FALSE,
Christian Beckmann's avatar
Christian Beckmann committed
		string("switch on normalisation of the design matrix columns to unit std. deviation"),
		false, no_argument);
	Option<bool> normdat(string("--dat_norm"),FALSE,
		string("switch on normalisation of the data time series to unit std. deviation"),
		false, no_argument);
	Option<bool> perfvn(string("--vn"),FALSE,
Christian Beckmann's avatar
Christian Beckmann committed
		string("        perform MELODIC variance-normalisation on data"),
		false, no_argument);
	Option<bool> perf_demean(string("--demean"),FALSE,
Christian Beckmann's avatar
Christian Beckmann committed
		string("switch on de-meaning of design and data"),
		false, no_argument);
	Option<int> help(string("-h,--help"), 0,
		string("display this help text"),
		false,no_argument);
Christian Beckmann's avatar
Christian Beckmann committed
	Option<bool> debug(string("--debug"), FALSE,
		string("display debug information"),
		false,no_argument,false);
	// Output options	
	Option<string> outcope(string("--out_cope"),string(""),
		string("output file name for COPEs (either as text file or image)"),
		false, requires_argument);
	Option<string> outz(string("--out_z"),string(""),
		string("        output file name for Z-stats (either as text file or image)"),
		false, requires_argument);
	Option<string> outt(string("--out_t"),string(""),
		string("        output file name for t-stats (either as text file or image)"),
		false, requires_argument);
	Option<string> outp(string("--out_p"),string(""),
		string("        output file name for p-values of Z-stats (either as text file or image)"),
		false, requires_argument);
	Option<string> outf(string("--out_f"),string(""),
		string("        output file name for F-value of full model fit"),
		false, requires_argument);
	Option<string> outpf(string("--out_pf"),string(""),
		string("output file name for p-value for full model fit"),
		false, requires_argument);
	Option<string> outres(string("--out_res"),string(""),
		string("output file name for residuals"),
		false, requires_argument);
	Option<string> outvarcb(string("--out_varcb"),string(""),
		string("output file name for variance of COPEs"),
		false, requires_argument);
	Option<string> outsigsq(string("--out_sigsq"),string(""),
		string("output file name for residual noise variance sigma-square"),
		false, requires_argument);
	Option<string> outdata(string("--out_data"),string(""),
		string("output file name for pre-processed data"),
		false, requires_argument);
	Option<string> outvnscales(string("--out_vnscales"),string(""),
		string("output file name for scaling factors for variance normalisation"),
		false, requires_argument);
        Option<vector<string> > textConfounds(string("--vxt"), vector<string>(), 
         string("\tlist of text files containing text matrix confounds. caution BETA option."), 
         false, requires_argument);
Matthew Webster's avatar
Matthew Webster committed
        Option<vector<string> > voxelwiseConfounds(string("--vxf"), vector<string>(), 
         string("\tlist of 4D images containing voxelwise confounds. caution BETA option."), 
Matthew Webster's avatar
Matthew Webster committed
         false, requires_argument);
Christian Beckmann's avatar
Christian Beckmann committed
//Globals 
	Melodic::basicGLM glm;
	int voxels = 0;
	Matrix data;
	Matrix design;
	Matrix contrasts;
	Matrix fcontrasts;
	Matrix meanR;
	RowVector vnscales;
Christian Beckmann's avatar
Christian Beckmann committed
	volume<float> mask;  

////////////////////////////////////////////////////////////////////////////

// Local functions
void save4D(Matrix what, string fname){
		if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){
			volume4D<float> tempVol;
			if(what.Nrows()>what.Ncols())
				tempVol.setmatrix(what.t(),mask);
			else
				tempVol.setmatrix(what,mask);
Matthew Webster's avatar
Matthew Webster committed
			save_volume4D(tempVol,fname);
		}
}

bool isimage(Matrix what){
	if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels))
		return TRUE;
	else
		return FALSE;
}

void saveit(Matrix what, string fname){
	if(isimage(what))
		save4D(what,fname);
Christian Beckmann's avatar
Christian Beckmann committed
	else if(fsl_imageexists(fndesign.value()))
		write_ascii_matrix(what.t(),fname);
	else
		write_ascii_matrix(what,fname);
}

Matthew Webster's avatar
Matthew Webster committed
int setup(int &dof){
	if(fsl_imageexists(fnin.value())){//read data
		//input is 3D/4D vol
		volume4D<float> tmpdata;
Matthew Webster's avatar
Matthew Webster committed
		read_volume4D(tmpdata,fnin.value());
		
		// create mask
		if(fnmask.value()>""){
			if(debug.value())
				cout << "Reading mask file " << fnmask.value() << endl;
			read_volume(mask,fnmask.value());
			if(!samesize(tmpdata[0],mask)){
				cerr << "ERROR: Mask image does not match input image" << endl;
				return 1;
Matthew Webster's avatar
Matthew Webster committed
 			};
			if(debug.value())
				cout << "Creating mask image" << endl;
Christian Beckmann's avatar
Christian Beckmann committed
			mask=tmpdata[0]*0.0+1.0;
			data=tmpdata.matrix(mask);
			Melodic::update_mask(mask,data);
		}	
		data = tmpdata.matrix(mask);
		voxels = data.Ncols();
Christian Beckmann's avatar
Christian Beckmann committed
			
		if(perfvn.value()){
			if(debug.value())
				cout << "Perform MELODIC variance normalisation (and demeaning)" << endl;			
Christian Beckmann's avatar
Christian Beckmann committed
			data = remmean(data,1);
			vnscales = Melodic::varnorm(data);		
		}
Matthew Webster's avatar
Matthew Webster committed
	data = read_ascii_matrix(fnin.value());	

	if(fsl_imageexists(fndesign.value())){//read design
		if(debug.value())
			cout << "Reading design file "<< fndesign.value()<< endl;
		volume4D<float> tmpdata;
		read_volume4D(tmpdata,fndesign.value());
		if(!samesize(tmpdata[0],mask)){
			cerr << "ERROR: GLM design does not match input image in size" << endl;
			return 1;
		}
		if(debug.value())
			cout << "Transposing data" << endl;
		design = tmpdata.matrix(mask).t();
		data = data.t();
	}else{
		design = read_ascii_matrix(fndesign.value());
	}

Matthew Webster's avatar
Matthew Webster committed
	if (perf_demean.value() ) {
		if(debug.value())
			cout << "De-meaning the data matrix" << endl;
		data = remmean(data,1);
	}

	dof=ols_dof(design);
	Matrix baseConfounds;
Matthew Webster's avatar
Matthew Webster committed

	if ( textConfounds.set() ) {
	  baseConfounds=read_ascii_matrix( textConfounds.value().at(0) );
	  for(unsigned int i=1; i< textConfounds.value().size(); i++) 
		baseConfounds|=read_ascii_matrix( textConfounds.value().at(i) );
	  dof-=textConfounds.value().size();
	  if ( !voxelwiseConfounds.set() )
	    data=(IdentityMatrix(baseConfounds.Nrows())-baseConfounds*pinv(baseConfounds))*data;
	    }
Matthew Webster's avatar
Matthew Webster committed

	if ( voxelwiseConfounds.set() ) {
	  vector<Matrix> confounds;
	  confounds.resize(voxelwiseConfounds.value().size());
	  volume4D<float> input;
	  for(unsigned int i=0; i< confounds.size(); i++) {
	    read_volume4D(input,voxelwiseConfounds.value().at(i));
	    if ( mask.nvoxels() )	  
	      confounds.at(i)=input.matrix(mask);
	    else
	    confounds.at(i)=input.matrix();
	  }
	  for(int voxel=1;voxel<=data.Ncols();voxel++) {
	    Matrix confound(confounds.at(0).Column(voxel) );
	    for(unsigned int i=1; i< confounds.size(); i++) 
	    confound|=confounds.at(i).Column(voxel);
	    if ( textConfounds.set() )
	      confound=baseConfounds | confound;
	    data.Column(voxel)=(IdentityMatrix(confound.Nrows())-confound*pinv(confound))*data.Column(voxel);	  
	  }
	  dof-=confounds.size();
Matthew Webster's avatar
Matthew Webster committed
	}

	if(normdat.value()){
		if(debug.value())
			cout << "Normalising data matrix to unit std-deviation" << endl;
Christian Beckmann's avatar
Christian Beckmann committed
		data =  SP(data,ones(data.Nrows(),1)*pow(stdev(data,1),-1));
	meanR=mean(data,1);
Matthew Webster's avatar
Matthew Webster committed

	if(perf_demean.value()){
		if(debug.value())
			cout << "De-meaning design matrix" << endl;	
Christian Beckmann's avatar
Christian Beckmann committed
		design = remmean(design,1);
Matthew Webster's avatar
Matthew Webster committed
		dof-=1;
Matthew Webster's avatar
Matthew Webster committed

	if(normdes.value()){
		if(debug.value())
			cout << "Normalising design matrix to unit std-deviation" << endl;
		design =  SP(design,ones(design.Nrows(),1)*pow(stdev(design,1),-1));
	if(fncontrasts.value()>""){//read contrast		
		contrasts = read_ascii_matrix(fncontrasts.value());
		if(!(contrasts.Ncols()==design.Ncols())){
			cerr << "ERROR: contrast matrix GLM design does not match GLM design" << endl;
			return 1;
		}
	}else{
		contrasts = IdentityMatrix(design.Ncols());
		contrasts &= -1.0 * contrasts;
	}
	return 0;	
}

void write_res(){	
	if(fnout.value()>"")
		saveit(glm.get_beta(),fnout.value());
	if(outcope.value()>"")
		saveit(glm.get_cbeta(),outcope.value());
	if(outz.value()>"")
		saveit(glm.get_z(),outz.value());
	if(outt.value()>"")
		saveit(glm.get_t(),outt.value());
	if(outp.value()>"")
		saveit(glm.get_p(),outp.value());
	if(outf.value()>"")
		saveit(glm.get_f_fmf(),outf.value());
	if(outpf.value()>"")
		saveit(glm.get_pf_fmf(),outpf.value());
	if(outres.value()>"")
		saveit(glm.get_residu(),outres.value());
	if(outvarcb.value()>"")
		saveit(glm.get_varcb(),outvarcb.value());
	if(outsigsq.value()>"")
		saveit(glm.get_sigsq(),outsigsq.value());
	if(outdata.value()>"")
		saveit(data,outdata.value());
	if(outvnscales.value()>"")
		saveit(vnscales,outvnscales.value());
}

int do_work(int argc, char* argv[]) {
Matthew Webster's avatar
Matthew Webster committed
  int dof(-1);
  if(setup(dof))
    exit(1);
  glm.olsfit(data,design,contrasts,dof);
  write_res();
  return 0;
}

////////////////////////////////////////////////////////////////////////////

int main(int argc,char *argv[]){
	  Tracer tr("main");
	  OptionParser options(title, examples);
	  try{
	    // must include all wanted options here (the order determines how
	    //  the help message is printed)
			options.add(fnin);
			options.add(fnout);
			options.add(fndesign);
			options.add(fncontrasts);
			options.add(fnmask);
			options.add(fnftest);
			options.add(dofset);
			options.add(normdes);
			options.add(normdat);
			options.add(perfvn);
			options.add(perf_demean);
			options.add(help);
			options.add(debug);
			options.add(outcope);
			options.add(outz);
			options.add(outt);
			options.add(outp);
			options.add(outf);
			options.add(outpf);
			options.add(outres);
			options.add(outvarcb);
			options.add(outsigsq);
			options.add(outdata);
			options.add(outvnscales);
			options.add(textConfounds);
Matthew Webster's avatar
Matthew Webster committed
			options.add(voxelwiseConfounds);
	    options.parse_command_line(argc, argv);

	    // line below stops the program if the help was requested or 
	    //  a compulsory option was not set
	    if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
				options.usage();
				exit(EXIT_FAILURE);
	    }else{
	  		// Call the local functions
	  		return do_work(argc,argv);
			}
		}catch(X_OptionError& e) {
			options.usage();
	  	cerr << endl << e.what() << endl;
	    exit(EXIT_FAILURE);
	  }catch(std::exception &e) {
	    cerr << e.what() << endl;
	  } 
	}