Skip to content
Snippets Groups Projects
meldata.cc 32 KiB
Newer Older
Mark Jenkinson's avatar
Mark Jenkinson committed
/*  MELODIC - Multivariate exploratory linear optimized decomposition into 
              independent components
    
    meldata.cc - data handler / container class

    Christian F. Beckmann, FMRIB Image Analysis Group
    
    Copyright (C) 1999-2008 University of Oxford */
Mark Jenkinson's avatar
Mark Jenkinson committed

// {{{  includes/namespaces

/*  Part of FSL - FMRIB's Software Library
    http://www.fmrib.ox.ac.uk/fsl
    fsl@fmrib.ox.ac.uk
    
    Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance
    Imaging of the Brain), Department of Clinical Neurology, Oxford
    University, Oxford, UK
    
    
    LICENCE
    
    FMRIB Software Library, Release 4.0 (c) 2007, The University of
    Oxford (the "Software")
    
    The Software remains the property of the University of Oxford ("the
    University").
    
    The Software is distributed "AS IS" under this Licence solely for
    non-commercial use in the hope that it will be useful, but in order
    that the University as a charitable foundation protects its assets for
    the benefit of its educational and research purposes, the University
    makes clear that no condition is made or to be implied, nor is any
    warranty given or to be implied, as to the accuracy of the Software,
    or that it will be suitable for any particular purpose or for use
    under any specific conditions. Furthermore, the University disclaims
    all responsibility for the use which is made of the Software. It
    further disclaims any liability for the outcomes arising from using
    the Software.
    
    The Licensee agrees to indemnify the University and hold the
    University harmless from and against any and all claims, damages and
    liabilities asserted by third parties (including claims for
    negligence) which arise directly or indirectly from the use of the
    Software or the sale of any products based on the Software.
    
    No part of the Software may be reproduced, modified, transmitted or
    transferred in any form or by any means, electronic or mechanical,
    without the express permission of the University. The permission of
    the University is not required if the said reproduction, modification,
    transmission or transference is done without financial return, the
    conditions of this Licence are imposed upon the receiver of the
    product, and all original and amended source code is included in any
    transmitted product. You may be held legally responsible for any
    copyright infringement that is caused or encouraged by your failure to
    abide by these terms and conditions.
    
    You are not permitted under this Licence to use this Software
    commercially. Use for which any financial return is received shall be
    defined as commercial use, and includes (1) integration of all or part
    of the source code or the Software into a product for sale or license
    by or on behalf of Licensee to third parties or (2) use of the
    Software or any derivative of it for research with the final aim of
    developing software products for sale or license to a third party or
    (3) use of the Software or any derivative of it for research with the
    final aim of developing non-software products for sale or license to a
    third party, or (4) use of the Software to provide any service to an
    external organisation for which payment is received. If you are
    interested in using the Software commercially, please contact Isis
    Innovation Limited ("Isis"), the technology transfer company of the
    University, to negotiate a licence. Contact details are:
    innovation@isis.ox.ac.uk quoting reference DE/1112. */
Mark Jenkinson's avatar
Mark Jenkinson committed

#include "newimage/newimageall.h"
Mark Jenkinson's avatar
Mark Jenkinson committed
#include "meloptions.h"
#include "meldata.h"
#include "melodic.h" 
#include "utils/log.h"
#include <time.h>
#include "miscmaths/miscprob.h"
#include "melhlprfns.h" 
Mark Jenkinson's avatar
Mark Jenkinson committed

using namespace Utilities;
using namespace NEWIMAGE;

Mark Jenkinson's avatar
Mark Jenkinson committed
namespace Melodic{
// {{{ Setup
Mark Jenkinson's avatar
Mark Jenkinson committed

  Matrix MelodicData::process_file(string fname, int numfiles)
Mark Jenkinson's avatar
Mark Jenkinson committed
  {
    volume4D<float> RawData;

    //read data
    message("Reading data file " << fname << "  ... ");
    read_volume4D(RawData,fname);
    message(" done" << endl);
    del_vols(RawData,opts.dummy.value());
Mark Jenkinson's avatar
Mark Jenkinson committed
    
    Mean += meanvol(RawData)/numfiles;
Mark Jenkinson's avatar
Mark Jenkinson committed
	
    //reshape
    Matrix tmpData;
    tmpData = RawData.matrix(Mask);
    
    //estimate smoothness
Christian Beckmann's avatar
Christian Beckmann committed
    if((Resels == 0)&&(!opts.filtermode))
      Resels = est_resels(RawData,Mask);
        
    //convert to percent BOLD signal change
    if(opts.pbsc.value()){
      message("  Converting data to percent BOLD signal change ...");
      Matrix meanimg = convert_to_pbsc(tmpData);
      meanR = meanimg.Row(1);
      message(" done" << endl);
		if(opts.remove_meanvol.value())
		{	      
			message(string("  Removing mean image ..."));
      		meanR = mean(tmpData);
      		tmpData = remmean(tmpData);
      		message(" done" << endl);
		}
		else meanR=ones(1,tmpData.Ncols());
	if(opts.remove_meantc.value()){
    	meanC = mean(tmpData,2);
		tmpData = remmean(tmpData,2);
	}
	
    //convert to power spectra
    if(opts.pspec.value()){
      message("  Converting data to powerspectra ...");
      tmpData = calc_FFT(tmpData);
      message(" done" << endl);
    }
	
    //switch dimension in case temporal ICA is required
    if(opts.temporal.value()){
      message(string("  Switching dimensions for temporal ICA") << endl);
      tmpData = tmpData.t();
      Matrix tmp;
      tmp = meanC;
      meanC = meanR.t();
      meanR = tmp.t();
      message("  Data size : " << Data.Nrows() << " x " << Data.Ncols() <<endl);
    }
Mark Jenkinson's avatar
Mark Jenkinson committed
      
    //variance - normalisation
    if(opts.varnorm.value()){
      message("  Normalising by voxel-wise variance ..."); 
Christian Beckmann's avatar
Christian Beckmann committed
			if(stdDev.Storage()==0)
      	stdDev = varnorm(tmpData,std::min(30,tmpData.Nrows()-1),
					opts.vn_level.value())/numfiles;
Christian Beckmann's avatar
Christian Beckmann committed
			else 	
				stdDev += varnorm(tmpData,std::min(30,tmpData.Nrows()-1),
					opts.vn_level.value())/numfiles;
      stdDevi = pow(stdDev,-1); 
      message(" done" << endl);
    return tmpData;
  }

  Matrix MelodicData::expand_mix()
  {
    Matrix out;
    out = expand_dimred(mixMatrix);
    return out;
  }

  Matrix MelodicData::expand_dimred(const Matrix& Mat)
  {
    int first, last;
    first = 1;
    last = DWM.at(0).Ncols();
    Matrix tmp = DWM.at(0) * Mat.Rows(first,last);
    for(unsigned int ctr = 1; ctr < DWM.size(); ctr++){
      first = last + 1;
      last += DWM.at(ctr).Ncols();
      tmp &= DWM.at(ctr) * Mat.Rows(first, last);
Mark Jenkinson's avatar
Mark Jenkinson committed
    }
    return tmp;
  }

  Matrix MelodicData::reduce_dimred(const Matrix& Mat)
  {
    int first, last;
    first = 1;
    last = WM.at(0).Ncols();
    Matrix tmp = WM.at(0) * Mat.Rows(first,last);
    for(unsigned int ctr = 1; ctr < WM.size(); ctr++){
      first = last + 1;
      last += WM.at(ctr).Ncols();
      tmp &= WM.at(ctr) * Mat.Rows(first, last);
Mark Jenkinson's avatar
Mark Jenkinson committed
    }
  void MelodicData::set_TSmode()
  {
	Matrix tmp, tmpT, tmpS, tmpT2, tmpS2, tmpT3;
    tmp = expand_dimred(mixMatrix);
    tmpT = zeros(tmp.Nrows()/numfiles, tmp.Ncols());
    tmpS = zeros(numfiles, tmp.Ncols());
Christian Beckmann's avatar
Christian Beckmann committed
    explained_var = krfact(tmp,tmpT,tmpS);
		outMsize("tmp",tmp);
		outMsize("tmpT",tmpT);
		outMsize("tmpS",tmpS);
		if(opts.approach.value()==string("tica")){		
    		Tmodes.clear(); Smodes.clear();
    		for(int ctr = 1; ctr <= tmp.Ncols(); ctr++){
				tmpT3 << reshape(tmp.Column(ctr),tmpT.Nrows(),numfiles);
				outMsize("tmpT3", tmpT3);
      			tmpT2 << tmpT.Column(ctr);
      			tmpS2 << tmpS.Column(ctr);
				tmpT3 << SP(tmpT3,pow(ones(tmpT3.Nrows(),1)*tmpS2.t(),-1));
				if(numfiles>1)
					tmpT2 |= tmpT3;
				if(mean(tmpS2,1).AsScalar()<0){
					tmpT2*=-1.0;
					tmpS2*=-1.0;
				}
      			add_Tmodes(tmpT2);
      			add_Smodes(tmpS2);
    		}
		}
Christian Beckmann's avatar
Christian Beckmann committed
		
Christian Beckmann's avatar
Christian Beckmann committed
	//add GLM OLS fit
	if(Tdes.Storage()){
		Matrix alltcs = Tmodes.at(0).Column(1);
		for(int ctr=1; ctr < (int)Tmodes.size();ctr++)
			alltcs|=Tmodes.at(ctr).Column(1);
		if((alltcs.Nrows()==Tdes.Nrows())&&(Tdes.Nrows()>Tdes.Ncols()))
			glmT.olsfit(alltcs,Tdes,Tcon);
	}
	if(Sdes.Storage()){
		Matrix alltcs = Smodes.at(0);
		for(int ctr=1; ctr < (int)Smodes.size();ctr++)
			alltcs|=Smodes.at(ctr);
		if((alltcs.Nrows()==Sdes.Nrows())&&(Sdes.Nrows()>Sdes.Ncols()&&alltcs.Nrows()>2))
			glmS.olsfit(alltcs,Sdes,Scon);
	}
  }

  void MelodicData::setup()
  { 
    numfiles = (int)opts.inputfname.value().size();
Christian Beckmann's avatar
Christian Beckmann committed
    setup_misc();

	if(opts.filtermode){ // basic setup for filtering only
		Data = process_file(opts.inputfname.value().at(0));
	}
	else{
Christian Beckmann's avatar
Christian Beckmann committed

      	if((numfiles > 1) && (opts.approach.value()==string("defl") || opts.approach.value()==string("symm")))
        	opts.approach.set_T("tica");
    	Matrix alldat, tmpData;
Christian Beckmann's avatar
Christian Beckmann committed
		bool tmpvarnorm = opts.varnorm.value();

		if(numfiles > 1 && opts.joined_vn.value()){
Christian Beckmann's avatar
Christian Beckmann committed
			opts.varnorm.set_T(false);
		}
    	alldat = process_file(opts.inputfname.value().at(0), numfiles) / numfiles;
Christian Beckmann's avatar
Christian Beckmann committed

		if(opts.pca_dim.value() > alldat.Nrows()-2){
			cerr << "ERROR:: too many components selected \n\n";
			exit(2);
		}
		
Christian Beckmann's avatar
Christian Beckmann committed
 		if(opts.debug.value())
			save4D(alldat,string("preproc_dat") + num2str(1));   
		for(int ctr = 1; ctr < numfiles; ctr++){
    		tmpData = process_file(opts.inputfname.value().at(ctr), numfiles) / numfiles;
Christian Beckmann's avatar
Christian Beckmann committed
			if(opts.debug.value())
				save4D(tmpData,string("preproc_dat") + num2str(ctr+1));
			if(tmpData.Ncols() == alldat.Ncols() && tmpData.Nrows() == alldat.Nrows())
      			alldat += tmpData;	
			else{
					if(tmpData.Ncols() == alldat.Ncols()){
						int mindim = min(alldat.Nrows(),tmpData.Nrows());
						alldat = alldat.Rows(1,mindim);
						tmpData = tmpData.Rows(1,mindim);
						alldat += tmpData;	
					}				
					else 	
					message("Data dimensions do not match - ignoring "+opts.inputfname.value().at(ctr) << endl);
				}
   		}	
    	//update mask
    	if(opts.update_mask.value()){
      		message("Excluding voxels with constant value ...");
      		update_mask(Mask, alldat); 
      		message(" done" << endl);
    	}
Christian Beckmann's avatar
Christian Beckmann committed

		if((numfiles > 1 ) && opts.joined_vn.value() && tmpvarnorm){	
Christian Beckmann's avatar
Christian Beckmann committed
			//variance - normalisation
	    	message(endl<<"Normalising jointly by voxel-wise variance ..."); 
	    	stdDev = varnorm(alldat,alldat.Nrows(),3.1);
	    	stdDevi = pow(stdDev,-1); 
	    	message(" done" << endl);
		if(numfiles>1)
    		message(endl << "Initial data size : "<<alldat.Nrows()<<" x "<<alldat.Ncols()<<endl<<endl);
Christian Beckmann's avatar
Christian Beckmann committed
		if(opts.debug.value())
			save4D(alldat,"alldat");
    	//estimate model order
    	Matrix tmpPPCA;
    	RowVector AdjEV, PercEV;
    	Matrix Corr, tmpE;
    	int order;
	cerr << "here1" << endl;
    	order = ppca_dim(remmean(alldat,2), RXweight, tmpPPCA, AdjEV, PercEV, Corr, pcaE, pcaD, Resels, opts.pca_est.value());	  
		if (opts.paradigmfname.value().length()>0)
			order += param.Ncols();
		cerr << "here2" << endl;		
	  	if(opts.pca_dim.value() == 0){
      		opts.pca_dim.set_T(order);
			PPCA=tmpPPCA;
  		}
    	order = opts.pca_dim.value();
		if(opts.debug.value())
			message(endl << "Model order : "<<order<<endl<<endl);
Christian Beckmann's avatar
Christian Beckmann committed

Christian Beckmann's avatar
Christian Beckmann committed
		if (opts.paradigmfname.value().length()>0){
			Matrix tmpPscales;
			tmpPscales = param.t() * alldat;
			paramS = stdev(tmpPscales.t());
		    
    		calc_white(pcaE, pcaD, order, param, paramS, whiteMatrix, dewhiteMatrix);
		}else
    		calc_white(pcaE, pcaD, order, whiteMatrix, dewhiteMatrix);

		if(opts.debug.value()){
Christian Beckmann's avatar
Christian Beckmann committed
			outMsize("pcaE",pcaE); saveascii(pcaE,"pcaE");
			outMsize("pcaD",pcaD); saveascii(pcaD,"pcaD");
			outMsize("AdjEV",AdjEV); saveascii(AdjEV,"AdjEV");
			outMsize("PercEV",PercEV); saveascii(PercEV,"PercEV");
			outMsize("tmpPPCA",tmpPPCA); saveascii(tmpPPCA,"tmpPPCA");
			outMsize("whiteMatrix",whiteMatrix); saveascii(whiteMatrix,"whiteMatrix");
			outMsize("dewhiteMatrix",dewhiteMatrix); saveascii(dewhiteMatrix,"dewhiteMatrix");
			cerr << "Order: " << order << endl;
		}

		EV = AdjEV;
		EVP = PercEV;

    	if(numfiles == 1){
      		Data = alldat;
      		Matrix tmp = IdentityMatrix(Data.Nrows());
      		DWM.push_back(tmp);
      		WM.push_back(tmp);
    	} 
Christian Beckmann's avatar
Christian Beckmann committed
		else {
			cerr << "here" << endl;
      		for(int ctr = 0; ctr < numfiles; ctr++){
Christian Beckmann's avatar
Christian Beckmann committed
				tmpData = process_file(opts.inputfname.value().at(ctr), numfiles);
				if(opts.joined_vn.value() && tmpvarnorm){
Christian Beckmann's avatar
Christian Beckmann committed
					tmpData=SP(tmpData,pow(ones(tmpData.Nrows(),1)*stdDev,-1));
				}
Christian Beckmann's avatar
Christian Beckmann committed
				//  whiten (separate / joint)
				Matrix newWM,newDWM; 
Christian Beckmann's avatar
Christian Beckmann committed
				if(!opts.joined_whiten.value()){	  
					message("  Individual whitening in a " << order << " dimensional subspace " << endl);
      	  			std_pca(tmpData, RXweight, Corr, pcaE, pcaD);
	  				calc_white(pcaE, pcaD, order, newWM, newDWM);
Christian Beckmann's avatar
Christian Beckmann committed
				}else{
					if(!opts.dr_pca.value()){
						std_pca(whiteMatrix*tmpData, RXweight, Corr, pcaE, pcaD);
						calc_white(pcaE, pcaD, order, newWM, newDWM);		
						newDWM=(dewhiteMatrix*newDWM);
						newWM=(newWM*whiteMatrix);
					}
					else{
					  if(opts.debug.value())
					    message(" --mod_pca ");
						tmp1 = whiteMatrix * alldat;
						tmp1 = remmean(tmp1,2) * tmpData.t();
						tmp2 = pinv(tmp1.t()).t();  
						std_pca(tmp1 * tmpData, RXweight, Corr, pcaE, pcaD);
						calc_white(pcaE, pcaD, order, newWM, newDWM);		
						newDWM=(tmp2*newDWM);
						newWM=(newWM * tmp1);
					}
Christian Beckmann's avatar
Christian Beckmann committed
				DWM.push_back(newDWM);
				WM.push_back(newWM);
				tmpData = newWM * tmpData;
Christian Beckmann's avatar
Christian Beckmann committed
				//concatenate Data
				if(Data.Storage() == 0)
	  			Data = tmpData;
				else
	  			Data &= tmpData;
Christian Beckmann's avatar
Christian Beckmann committed
		opts.varnorm.set_T(tmpvarnorm);
    	message(endl << "  Data size : "<<Data.Nrows()<<" x "<<Data.Ncols()<<endl<<endl);
Christian Beckmann's avatar
Christian Beckmann committed
 		outMsize("stdDev",stdDev);
   
    	//meanC=mean(Data,2);
Christian Beckmann's avatar
Christian Beckmann committed
		if(opts.debug.value())
			save4D(Data,"concat_data");    
    	//save the mean & mask
    	save_volume(Mask,logger.appendDir("mask"));
    	save_volume(Mean,logger.appendDir("mean"));
Christian Beckmann's avatar
Christian Beckmann committed
    }
  } // void setup()
Christian Beckmann's avatar
Christian Beckmann committed
	
  void MelodicData::setup_misc()
  {

    //initialize Mean
Matthew Webster's avatar
Matthew Webster committed
    read_volume(Mean,opts.inputfname.value().at(0));

    //create mask
    create_mask(Mask);

Christian Beckmann's avatar
Christian Beckmann committed
	//setup background image
	if(opts.bgimage.value()>""){
		read_volume(background,opts.bgimage.value());
    	if(!samesize(Mean,background)){
        	cerr << "ERROR:: background image and data have different dimensions  \n\n";
        	exit(2);
    	}
	}else{
		background = Mean;
	}
    if(!samesize(Mean,Mask)){
      cerr << "ERROR:: mask and data have different dimensions  \n\n";
      exit(2);
    }

    //reset mean
    Mean *= 0;
     
    //set up weighting
Mark Jenkinson's avatar
Mark Jenkinson committed
    if(opts.segment.value().length()>0){
      create_RXweight();
Mark Jenkinson's avatar
Mark Jenkinson committed
    }

    //seed the random number generator
    double tmptime = time(NULL);
    if ( opts.seed.value() != -1 ) {
      tmptime = opts.seed.value(); 
    }
    srand((unsigned int) tmptime);
Christian Beckmann's avatar
Christian Beckmann committed
	if(opts.paradigmfname.value().length()>0){
		message("  Use columns in " << opts.paradigmfname.value() 
	      << " for PCA initialisation" <<endl);
		param = read_ascii_matrix(opts.paradigmfname.value());
Christian Beckmann's avatar
Christian Beckmann committed
	    Matrix tmpPU, tmpPV;
		DiagonalMatrix tmpPD;
		SVD(param, tmpPD, tmpPU, tmpPV);
		param = tmpPU;
		
		opts.pca_dim.set_T(std::max(opts.pca_dim.value(), param.Ncols()+3));		
		if(opts.debug.value()){
			outMsize("Paradigm",param); saveascii(param,"param");
Christian Beckmann's avatar
Christian Beckmann committed
		}
		//opts.guessfname.set_T(opts.paradigmfname.value());
Christian Beckmann's avatar
Christian Beckmann committed
	}

	//read in post-proc design matrices etc
	if(opts.fn_Tdesign.value().length()>0)
		Tdes = read_ascii_matrix(opts.fn_Tdesign.value());
	if(opts.fn_Sdesign.value().length()>0)
		Sdes = read_ascii_matrix(opts.fn_Sdesign.value());
	if(opts.fn_Tcon.value().length()>0)
		Tcon = read_ascii_matrix(opts.fn_Tcon.value());
	if(opts.fn_Scon.value().length()>0)
		Scon = read_ascii_matrix(opts.fn_Scon.value());
	if(opts.fn_TconF.value().length()>0)
		TconF = read_ascii_matrix(opts.fn_TconF.value());
	if(opts.fn_SconF.value().length()>0)
		SconF = read_ascii_matrix(opts.fn_SconF.value());
		
	if(numfiles>1 && Sdes.Storage() == 0){
 		Sdes = ones(numfiles,1);
		if(Scon.Storage() == 0){
			Scon = ones(1,1);
			Scon &= -1*Scon;
		}
	}
	Tdes = remmean(Tdes,1);
Christian Beckmann's avatar
Christian Beckmann committed
  }
Mark Jenkinson's avatar
Mark Jenkinson committed

  void MelodicData::save()
  {   

    //check for temporal ICA
    if(opts.temporal.value()){
      message(string("temporal ICA: transform back the data ... "));
Mark Jenkinson's avatar
Mark Jenkinson committed
      Matrix tmpIC = mixMatrix.t();
      mixMatrix=IC.t();
      IC=tmpIC;

      unmixMatrix=pinv(mixMatrix);
      Data = Data.t();
      tmpIC = meanC;
      meanC = meanR.t();
      meanR = tmpIC.t();
      //  whiteMatrix = whiteMatrix.t;
      //  dewhiteMatrix = dewhiteMatrix.t();
      message(string("done") << endl);
      opts.temporal.set_T(false); // Do not switch again!
    message(endl << "Writing results to : " << endl);
Mark Jenkinson's avatar
Mark Jenkinson committed

    //Output IC	
    if((IC.Storage()>0)&&(opts.output_origIC.value())&&(after_mm==false))
      save4D(IC,opts.outputfname.value() + "_oIC");
      
Mark Jenkinson's avatar
Mark Jenkinson committed
    //Output IC -- adjusted for noise	
      if(IC.Storage()>0){
Christian Beckmann's avatar
Christian Beckmann committed
				volume4D<float> tempVol;	
Christian Beckmann's avatar
Christian Beckmann committed
				//Matrix ICadjust;
				if(after_mm){
	  			save4D(IC,opts.outputfname.value() + "_IC");
	  			// ICadjust = IC;
				}	
				else{
Christian Beckmann's avatar
Christian Beckmann committed
					Matrix resids = stdev(Data - mixMatrix * IC);
					for(int ctr=1;ctr<=resids.Ncols();ctr++)
						if(resids(1,ctr) < 0.05)
							resids(1,ctr)=1;
	  //			stdNoisei = pow(stdev(Data - mixMatrix * IC)*
		//				std::sqrt((float)(Data.Nrows()-1))/
		//				std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1);
	  			stdNoisei = pow(resids*
Christian Beckmann's avatar
Christian Beckmann committed
						std::sqrt((float)(Data.Nrows()-1))/
						std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1);
Christian Beckmann's avatar
Christian Beckmann committed
	  			ColumnVector diagvals;
	  			diagvals=pow(diag(unmixMatrix*unmixMatrix.t()),-0.5);
Christian Beckmann's avatar
Christian Beckmann committed
	  			save4D(SP(IC,diagvals*stdNoisei),opts.outputfname.value() + "_IC");
				}
Christian Beckmann's avatar
Christian Beckmann committed
				if(opts.output_origIC.value())
	  			save4D(stdNoisei,string("Noise_stddev_inv"));
      }
Christian Beckmann's avatar
Christian Beckmann committed
     
    //Output T- & S-modes
    save_Tmodes();
    save_Smodes();
Christian Beckmann's avatar
Christian Beckmann committed

Mark Jenkinson's avatar
Mark Jenkinson committed
    //Output mixMatrix
    if(mixMatrix.Storage()>0){
Christian Beckmann's avatar
Christian Beckmann committed
      saveascii(expand_mix(), opts.outputfname.value() + "_mix");
Christian Beckmann's avatar
Christian Beckmann committed
      mixFFT=calc_FFT(expand_mix(), opts.logPower.value());
      saveascii(mixFFT,opts.outputfname.value() + "_FTmix");      
Christian Beckmann's avatar
Christian Beckmann committed
    //Output PPCA
    if(PPCA.Storage()>0)
      saveascii(PPCA, opts.outputfname.value() + "_PPCA");
  
    if(ICstats.Storage()>0)
      saveascii(ICstats,opts.outputfname.value() + "_ICstats"); 
      
Mark Jenkinson's avatar
Mark Jenkinson committed
    //Output unmixMatrix
    if(opts.output_unmix.value() && unmixMatrix.Storage()>0)
      saveascii(unmixMatrix,opts.outputfname.value() + "_unmix");
Mark Jenkinson's avatar
Mark Jenkinson committed

    //Output Mask
    message("  "<< logger.appendDir("mask") <<endl);

    //Output mean
    if(opts.output_mean.value() && meanC.Storage()>0 && meanR.Storage()>0){
      saveascii(meanR,opts.outputfname.value() + "_meanR");
      saveascii(meanC,opts.outputfname.value() + "_meanC");
Mark Jenkinson's avatar
Mark Jenkinson committed
    }

    //Output white
    if(opts.output_white.value() && whiteMatrix.Storage()>0&&
Christian Beckmann's avatar
Christian Beckmann committed
      dewhiteMatrix.Storage()>0){
      	saveascii(whiteMatrix,opts.outputfname.value() + "_white");
      	saveascii(dewhiteMatrix,opts.outputfname.value() + "_dewhite");
      	Matrix tmp;
      	tmp=calc_FFT(dewhiteMatrix, opts.logPower.value());
      	saveascii(tmp,opts.outputfname.value() + "_FTdewhite");
Mark Jenkinson's avatar
Mark Jenkinson committed

    //Output PCA
    if(opts.output_pca.value() && pcaD.Storage()>0&&pcaE.Storage()>0){
      saveascii(pcaE,opts.outputfname.value() + "_pcaE");
      saveascii((Matrix) diag(pcaD),opts.outputfname.value() + "_pcaD");
Mark Jenkinson's avatar
Mark Jenkinson committed
      Matrix PCAmaps;
Christian Beckmann's avatar
Christian Beckmann committed
      if(whiteMatrix.Ncols()==Data.Ncols())
				PCAmaps = dewhiteMatrix.t();
      else
				PCAmaps = whiteMatrix * Data;
Mark Jenkinson's avatar
Mark Jenkinson committed

      save4D(PCAmaps,opts.outputfname.value() + "_pca");
    }
 
		message("...done" << endl);
  } //void save()
Mark Jenkinson's avatar
Mark Jenkinson committed
  int MelodicData::remove_components()
  {  
    message("Reading " << opts.filtermix.value() << endl) 
    mixMatrix = read_ascii_matrix(opts.filtermix.value());
    if (mixMatrix.Storage()<=0) {
      cerr <<" Please specify the mixing matrix correctly" << endl;
      exit(2);
    }
    
    unmixMatrix = pinv(mixMatrix);
    IC = unmixMatrix * Data;

    string tmpstr;
    tmpstr = opts.filter.value();

    Matrix noiseMix;
    Matrix noiseIC;

    int ctr=0;    
    char *p;
    char t[1024];
    const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";
    
    message("Filtering the data...");
    strcpy(t, tmpstr.c_str());
    p=strtok(t,discard);
    ctr = atoi(p);
    if(ctr>0 && ctr<=mixMatrix.Ncols()){
      message(" "<< ctr );
      noiseMix = mixMatrix.Column(ctr);
      noiseIC  = IC.Row(ctr).t();    
Christian Beckmann's avatar
Christian Beckmann committed
    }
    else{
Mark Jenkinson's avatar
Mark Jenkinson committed
      cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
    }
    
    do{
      p=strtok(NULL,discard);
      if(p){
Christian Beckmann's avatar
Christian Beckmann committed
				ctr = atoi(p);
Mark Jenkinson's avatar
Mark Jenkinson committed
	
        if(ctr>0 && ctr<=mixMatrix.Ncols()){
Christian Beckmann's avatar
Christian Beckmann committed
	  			message(" "<<ctr);
	  			noiseMix |= mixMatrix.Column(ctr);
	  			noiseIC  |= IC.Row(ctr).t();
				}
				else{
	  			cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
				}
Mark Jenkinson's avatar
Mark Jenkinson committed
      }
    }while(p);
    message(endl);
    Matrix newData;

		outMsize("DATA",Data);
		outMsize("IC",IC);
		outMsize("noiseIC",noiseIC);
		outMsize("noiseMix",noiseMix);
		outMsize("meanR",meanR);
		outMsize("meanC",meanC);

Mark Jenkinson's avatar
Mark Jenkinson committed
    newData = Data - noiseMix * noiseIC.t();
Christian Beckmann's avatar
Christian Beckmann committed

		if(meanR.Storage()>0)
    	newData = newData + ones(newData.Nrows(),1)*meanR;
Mark Jenkinson's avatar
Mark Jenkinson committed
    
    volume4D<float> tmp;
    read_volume4D(tmp,opts.inputfname.value().at(0)); 
Mark Jenkinson's avatar
Mark Jenkinson committed
    tmp.setmatrix(newData,Mask);
    save_volume4D(tmp,logger.appendDir(opts.outputfname.value() + "_ICAfiltered")); 
   
    return 0;
  } // int remove_components()
Mark Jenkinson's avatar
Mark Jenkinson committed
  void MelodicData::create_RXweight()
  {
    message("Reading the weights for the covariance R_X from file "<< opts.segment.value() << endl);
  
    volume4D<float> tmpRX;
    read_volume4D(tmpRX,opts.segment.value());
    RXweight = tmpRX.matrix(Mask);
  } 
Christian Beckmann's avatar
Christian Beckmann committed
  void MelodicData::est_smoothness()
  {
    if(Resels == 0){
      string SM_path = opts.binpath + "smoothest";
      string Mask_fname = logger.appendDir("mask");

      if(opts.segment.value().length()>0){
Christian Beckmann's avatar
Christian Beckmann committed
				Mask_fname =  opts.segment.value();
      } 

      // Setup external call to smoothest:
      char callSMOOTHESTstr[1000];
      ostrstream osc(callSMOOTHESTstr,1000);
      osc  << SM_path << " -d " << data_dim()
Christian Beckmann's avatar
Christian Beckmann committed
	   		<< " -r " << opts.inputfname.value().at(0) << " -m " 
	   		<< Mask_fname << " > " << logger.appendDir("smoothest") << '\0';
      
      message("  Calling Smoothest: " << callSMOOTHESTstr << endl);
      system(callSMOOTHESTstr);

      //read back the results
      ifstream in;
      string str;
      Resels = 1.0;
      
      in.open(logger.appendDir("smoothest").c_str(), ios::in);
      if(in>0){
Christian Beckmann's avatar
Christian Beckmann committed
				for(int ctr=1; ctr<7; ctr++)
					in >> str;
				in.close();
				if(str!="nan")
	  			Resels = atof(str.c_str());
Christian Beckmann's avatar
Christian Beckmann committed
  unsigned long MelodicData::standardise(volume<float>& mask, volume4D<float>& R)
  {
Christian Beckmann's avatar
Christian Beckmann committed
    	unsigned long count = 0;
    	int M=R.tsize();
Christian Beckmann's avatar
Christian Beckmann committed
    	for (int z=mask.minz(); z<=mask.maxz(); z++) {
      	for (int y=mask.miny(); y<=mask.maxy(); y++) {
					for (int x=mask.minx(); x<=mask.maxx(); x++) {
	  				if( mask(x,y,z) > 0.5) {
	    				count ++;
	    				if( M > 2 ) {
	      				// For each voxel 
	      				//    calculate mean and standard deviation...
	      				double Sx = 0.0, SSx = 0.0;	      
	      				for ( int t = 0; t < M; t++ ) {
									float R_it = R(x,y,z,t);
									Sx += R_it;
									SSx += (R_it)*(R_it);
	      				}
Christian Beckmann's avatar
Christian Beckmann committed
	      				float mean = Sx / M;
	      				float sdsq = (SSx - ((Sx)*(Sx) / M)) / (M - 1) ;
Christian Beckmann's avatar
Christian Beckmann committed
	      				if (sdsq<=0) {
									// trap for differences between mask and invalid data
									mask(x,y,z)=0;
									count--;
	      				} else {
	      					//    ... and use them to standardise to N(0, 1).
									for ( unsigned short t = 0; t < M; t++ ) {
		  							R(x,y,z,t) = (R(x,y,z,t) - mean) / sqrt(sdsq);
									}
	      				} 
	    				}
	  				}
					}
      	}
    	}  
    	return count;

  float MelodicData::est_resels(volume4D<float> R, volume<float> mask)
  {
    message("  Estimating data smoothness ... ");
    unsigned long mask_volume = standardise(mask, R);

    int dof = R.tsize();
    unsigned long N = mask_volume;

    // MJ additions to make it cope with 2D images
    bool usez = true;
    if (R.zsize() <= 1) { usez = false; }

    enum {X = 0, Y, Z};
    float SSminus[3] = {0, 0, 0}, S2[3] = {0, 0, 0};

    int zstart=1;
    if (!usez) zstart=0;
    for ( unsigned short z = zstart; z < R.zsize() ; z++ )
      for ( unsigned short y = 1; y < R.ysize() ; y++ )
Christian Beckmann's avatar
Christian Beckmann committed
				for ( unsigned short x = 1; x < R.xsize() ; x++ )
	  			// Sum over N
	  			if( (mask(x, y, z)>0.5) &&
	      		(mask(x-1, y, z)>0.5) && 
	      		(mask(x, y-1, z)>0.5) && 
	      		( (!usez) || (mask(x, y, z-1)>0.5) ) ) {
Christian Beckmann's avatar
Christian Beckmann committed
	    				N++;
Christian Beckmann's avatar
Christian Beckmann committed
	    				for ( unsigned short t = 0; t < R.tsize(); t++ ) {
	      				// Sum over M
	      				SSminus[X] += R(x, y, z, t) * R(x-1, y, z, t);
	      				SSminus[Y] += R(x, y, z, t) * R(x, y-1, z, t);
	      				if (usez) SSminus[Z] += R(x, y, z, t) * R(x, y, z-1, t);

	      				S2[X] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + 
									R(x-1, y, z, t)*R(x-1, y, z, t));
	      				S2[Y] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + 
									R(x, y-1, z, t)*R(x, y-1, z, t));
	      				if (usez) S2[Z] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + 
									R(x, y, z-1, t)*R(x, y, z-1, t));
	    				}

    float norm = 1.0/(float) N;
    float v = dof;	// v - degrees of freedom (nu)  
    if(R.tsize() > 1) {
      norm = (v - 2) / ((v - 1) * N * R.tsize());
    }
Mark Jenkinson's avatar
Mark Jenkinson committed
 
    // for extreme smoothness 
    if (SSminus[X]>=0.99999999*S2[X]) 
      SSminus[X]=0.99999*S2[X];  
    if (SSminus[Y]>=0.99999999*S2[Y]) 
      SSminus[Y]=0.99999*S2[Y];
    if (usez) 
      if (SSminus[Z]>=0.99999999*S2[Z]) 
Christian Beckmann's avatar
Christian Beckmann committed
				SSminus[Z]=0.99999*S2[Z];
    // Convert to sigma squared
    float sigmasq[3] = {0,0,0};
    sigmasq[X] = -1.0 / (4 * log(fabs(SSminus[X]/S2[X])));
    sigmasq[Y] = -1.0 / (4 * log(fabs(SSminus[Y]/S2[Y])));
    if (usez) { sigmasq[Z] = -1.0 / (4 * log(fabs(SSminus[Z]/S2[Z]))); }
    
    // Convert to full width half maximum
    float FWHM[3] = {0,0,0};
    FWHM[X] = sqrt(8 * log(2) * sigmasq[X]);
    FWHM[Y] = sqrt(8 * log(2) * sigmasq[Y]);
    if (usez) { FWHM[Z] = sqrt(8 * log(2) * sigmasq[Z]); }
    float resels = FWHM[X] * FWHM[Y];
    if (usez) resels *= FWHM[Z];

    message(" done " <<endl);
    return resels;
  }
  void MelodicData::create_mask(volume<float>& theMask)
Mark Jenkinson's avatar
Mark Jenkinson committed
  {
    if(opts.use_mask.value() && opts.maskfname.value().size()>0){   // mask provided 
      read_volume(theMask,opts.maskfname.value());
Christian Beckmann's avatar
Christian Beckmann committed
      message("Mask provided : " << opts.maskfname.value()<<endl<<endl);
Mark Jenkinson's avatar
Mark Jenkinson committed
    }
    else{
      if(opts.perf_bet.value() && opts.use_mask.value()){ //use BET
Christian Beckmann's avatar
Christian Beckmann committed
				message("Create mask ... ");
    		//save first image
    		tmpnam(Mean_fname); // generate a tmp name
    		save_volume(Mean,Mean_fname);    

Christian Beckmann's avatar
Christian Beckmann committed
				// set up all strings
				string BET_outputfname = string(Mean_fname)+"_brain";
Mark Jenkinson's avatar
Mark Jenkinson committed

Christian Beckmann's avatar
Christian Beckmann committed
				string BET_path = opts.binpath + "bet";
				string BET_optarg = "-m -f 0.4"; // see man bet
				string Mask_fname = BET_outputfname+"_mask";
Mark Jenkinson's avatar
Mark Jenkinson committed

Christian Beckmann's avatar
Christian Beckmann committed
				// Setup external call to BET:
Mark Jenkinson's avatar
Mark Jenkinson committed

		//		char callBETstr[1000];
	//			ostrstream betosc(callBETstr,1000);
//				betosc  << BET_path << " " << Mean_fname << " " 
//	     		<< BET_outputfname << " " << BET_optarg << " > /dev/null " << '\0';
Mark Jenkinson's avatar
Mark Jenkinson committed
	
//        message("  Calling BET: " << callBETstr << endl);
//				system(callBETstr);

				string tmpstr = BET_path + string(" ") + 
				                Mean_fname + string(" ") + BET_outputfname + string(" ") + 
				                BET_optarg + string(" > /dev/null ");
				system(tmpstr.c_str());
								
Christian Beckmann's avatar
Christian Beckmann committed
				// read back the Mask file   
				read_volume(theMask,Mask_fname);
				
				// clean /tmp
		    char callRMstr[1000];
		    ostrstream osc(callRMstr,1000);
		    osc  << "rm " << string(Mean_fname) <<"*  " << '\0';
		    system(callRMstr);
		   
Christian Beckmann's avatar
Christian Beckmann committed
				message("done" << endl);
Mark Jenkinson's avatar
Mark Jenkinson committed
      }  
      else{
Christian Beckmann's avatar
Christian Beckmann committed
				if(opts.use_mask.value()){   //just threshold the Mean
	  			message("Create mask ... ");
	  			float Mmin, Mmax, Mtmp;
	  			Mmin = Mean.min(); Mmax = Mean.max();
	  			theMask = binarise(Mean,Mmin + opts.threshold.value()* 
						(Mmax-Mmin),Mmax);
Mark Jenkinson's avatar
Mark Jenkinson committed
          Mtmp = Mmin + opts.threshold.value()* (Mmax-Mmin);
Christian Beckmann's avatar
Christian Beckmann committed
	  			message("done" << endl);
				}
				else{ //well, don't threshold then
Christian Beckmann's avatar
Christian Beckmann committed
	  		  theMask = Mean;
	  		  theMask = 1.0;
Christian Beckmann's avatar
Christian Beckmann committed
				}
Mark Jenkinson's avatar
Mark Jenkinson committed
      }
    }
    if(opts.remove_endslices.value()){ 
      // just in case mc introduced something nasty
      message("  Deleting end slices" << endl);
      for(int ctr1=theMask.miny(); ctr1<=theMask.maxy(); ctr1++){
Christian Beckmann's avatar
Christian Beckmann committed
				for(int ctr2=theMask.minx(); ctr2<=theMask.maxx(); ctr2++){   
	  			theMask(ctr2,ctr1,Mask.minz()) = 0.0;
	  			theMask(ctr2,ctr1,Mask.maxz()) = 0.0;
				}
Mark Jenkinson's avatar
Mark Jenkinson committed
      }
    }
  } //void create_mask()
Christian Beckmann's avatar
Christian Beckmann committed
  void MelodicData::sort()
  {
Christian Beckmann's avatar
Christian Beckmann committed
    int numComp = mixMatrix.Ncols(), numVox = IC.Ncols(), 
        numTime = mixMatrix.Nrows(), i,j;
	//flip IC maps to be positive (on max)
	//flip Subject/Session modes to be positive (on average)
	//flip time courses accordingly
Christian Beckmann's avatar
Christian Beckmann committed
    for(int ctr_i = 1; ctr_i <= numComp; ctr_i++)
      if(IC.Row(ctr_i).MaximumAbsoluteValue()>IC.Row(ctr_i).Maximum()){
Christian Beckmann's avatar
Christian Beckmann committed
				flipres(ctr_i);	
    message("Sorting IC maps" << endl);  
    Matrix tmpscales, tmpICrow, tmpMIXcol;
	if(numfiles > 1 && opts.approach.value()==string("tica")){
		set_TSmode();
		Matrix allmodes = Smodes.at(0);
		for(int ctr = 1; ctr < (int)Smodes.size();++ctr)
			allmodes |= Smodes.at(ctr);
		tmpscales = median(allmodes).t();	
	} else {
    // re-order wrt standard deviation of IC maps 
Christian Beckmann's avatar
Christian Beckmann committed
		
    ICstats = tmpscales;

    double max_val, min_val = tmpscales.Minimum()-1;

    for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
      max_val = tmpscales.Maximum2(i,j);
      ICstats(ctr_i,1)=max_val;
  
      tmpICrow = IC.Row(ctr_i);
      tmpMIXcol = mixMatrix.Column(ctr_i);
      
      IC.SubMatrix(ctr_i,ctr_i,1,numVox) = IC.SubMatrix(i,i,1,numVox);
      mixMatrix.SubMatrix(1,numTime,ctr_i,ctr_i) = 
Christian Beckmann's avatar
Christian Beckmann committed
				mixMatrix.SubMatrix(1,numTime,i,i);

      IC.SubMatrix(i,i,1,numVox) = tmpICrow.SubMatrix(1,1,1,numVox);
      mixMatrix.SubMatrix(1,numTime,i,i) = tmpMIXcol.SubMatrix(1,numTime,1,1);
  
      tmpscales(i,1)=tmpscales(ctr_i,1);
      tmpscales(ctr_i,1)=min_val;

    ICstats /= ICstats.Column(1).Sum();
    ICstats *= 100;
    
    if(EVP.Storage()>0){
      tmpscales = ICstats.Column(1).AsMatrix(ICstats.Nrows(),1) * EVP(1,numComp);
      ICstats |= tmpscales;
    }

    if(Data.Storage()>0&&stdDev.Storage()>0){
      Matrix copeP(tmpscales), copeN(tmpscales);
      Matrix max_ICs(tmpscales), min_ICs(tmpscales);
      for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
Christian Beckmann's avatar
Christian Beckmann committed
				int i,j;
				max_ICs(ctr_i,1) = IC.Row(ctr_i).Maximum2(i,j);
				copeP(ctr_i,1) = std::abs((pinv(mixMatrix)*
					Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*
					(mixMatrix.Column(ctr_i).Maximum()-
					mixMatrix.Column(ctr_i).Minimum())/meanR(1,j));

				min_ICs(ctr_i,1) = IC.Row(ctr_i).Minimum2(i,j);
				copeN(ctr_i,1) = -1.0*std::abs((pinv(mixMatrix)*
					Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*