Newer
Older
//
// splinterpolator.h
//
// Jesper Andersson, FMRIB Image Analysis Group
//
// Copyright (C) 2008 University of Oxford
//
// CCOPYRIGHT
//
#ifndef splinterpolator_h
#define splinterpolator_h
#include <vector>
#include <string>
#include <cmath>
#include "newmat.h"
#include "miscmaths/miscmaths.h"
namespace SPLINTERPOLATOR {
enum ExtrapolationType {Zeros, Constant, Mirror, Periodic};
class SplinterpolatorException: public std::exception
{
private:
std::string m_msg;
public:
SplinterpolatorException(const std::string& msg) throw(): m_msg(msg) {}
virtual const char *what() const throw() {
return string("Splinterpolator::" + m_msg).c_str();
}
~SplinterpolatorException() throw() {}
};
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class Splinterpolator:
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
template<class T>
class Splinterpolator
{
public:
// Constructors
Splinterpolator() : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0) {}
Splinterpolator(const T *data, const std::vector<unsigned int>& dim, const std::vector<ExtrapolationType>& et, unsigned int order=3, bool copy_low_order=true, double prec=1e-8) : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0)
common_construction(data,dim,order,prec,et,copy_low_order);
Splinterpolator(const T *data, const std::vector<unsigned int>& dim, ExtrapolationType et=Zeros, unsigned int order=3, bool copy_low_order=true, double prec=1e-8) : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0)
{
std::vector<ExtrapolationType> ett(dim.size(),et);
common_construction(data,dim,order,prec,ett,copy_low_order);
// Copy construction. May be removed in future
Splinterpolator(const Splinterpolator<T>& src) : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0) { assign(src); }
~Splinterpolator() { if(_own_coef) delete [] _coef; }
Splinterpolator& operator=(const Splinterpolator& src) { if(_own_coef) delete [] _coef; assign(src); return(*this); }
// Set new data in Splinterpolator.
void Set(const T *data, const std::vector<unsigned int>& dim, const std::vector<ExtrapolationType>& et, unsigned int order=3, bool copy_low_order=true, double prec=1e-8)
if (_own_coef) delete [] _coef;
common_construction(data,dim,order,prec,et,copy_low_order);
void Set(const T *data, const std::vector<unsigned int>& dim, ExtrapolationType et, unsigned int order=3, bool copy_low_order=true, double prec=1e-8)
{
std::vector<ExtrapolationType> vet(dim.size(),Zeros);
Set(data,dim,vet,order,copy_low_order,prec);
}
// Return interpolated value
T operator()(const std::vector<float>& coord) const;
T operator()(double x, double y=0, double z=0, double t=0) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (_ndim>4 || (t && _ndim<4) || (z && _ndim<3) || (y && _ndim<2)) throw SplinterpolatorException("operator(): input has wrong dimensionality");
double coord[5] = {x,y,z,t,0.0};
return(static_cast<T>(value_at(coord)));
// Return interpolated value along with first derivative in one direction (useful for distortion correction)
T operator()(const std::vector<float>& coord, unsigned int dd, T *dval) const;
T operator()(double x, double y, double z, unsigned int dd, T *dval) const;
T operator()(double x, double y, unsigned int dd, T *dval) const { return((*this)(x,y,0.0,dd,dval)); }
T operator()(double x, T *dval) const { return((*this)(x,0.0,0.0,0,dval)); }
// Return interpolated value along with selected derivatives
T ValAndDerivs(const std::vector<float>& coord, const std::vector<unsigned int>& deriv, std::vector<T>& rderiv) const;
T ValAndDerivs(const std::vector<float>& coord, std::vector<T>& rderiv) const
{
std::vector<unsigned int> deriv(_ndim,1);
return(ValAndDerivs(coord,deriv,rderiv));
}
T ValAndDerivs(double x, double y, double z, std::vector<T>& rderiv) const;
// Return continous derivative at voxel centres (only works for order>1)
T Deriv(const std::vector<unsigned int>& indx, unsigned int ddir) const;
T Deriv1(const std::vector<unsigned int>& indx) const {return(Deriv(indx,0));}
T Deriv2(const std::vector<unsigned int>& indx) const {return(Deriv(indx,1));}
T Deriv3(const std::vector<unsigned int>& indx) const {return(Deriv(indx,2));}
T Deriv4(const std::vector<unsigned int>& indx) const {return(Deriv(indx,3));}
T Deriv5(const std::vector<unsigned int>& indx) const {return(Deriv(indx,4));}
T DerivXYZ(unsigned int i, unsigned int j, unsigned int k, unsigned int dd) const;
T DerivX(unsigned int i, unsigned int j, unsigned int k) const {return(DerivXYZ(i,j,k,0));}
T DerivY(unsigned int i, unsigned int j, unsigned int k) const {return(DerivXYZ(i,j,k,1));}
T DerivZ(unsigned int i, unsigned int j, unsigned int k) const {return(DerivXYZ(i,j,k,2));}
void Grad3D(unsigned int i, unsigned int j, unsigned int k, T *xg, T *yg, T *zg) const;
void Grad(const std::vector<unsigned int>& indx, std::vector<T>& grad) const;
// Return continous addition (since previous voxel) of integral at voxel centres
T IntX() const;
T IntY() const;
T IntZ() const;
//
// The "useful" functionality pretty much ends here.
// Remaining functions are mainly for debugging/diagnostics.
//
unsigned int NDim() const { return(_ndim); }
unsigned int Order() const { return(_order); }
ExtrapolationType Extrapolation(unsigned int dim) const
{
if (dim >= _ndim) throw SplinterpolatorException("Extrapolation: Invalid dimension");
return(_et[dim]);
}
const std::vector<unsigned int>& Size() const { return(_dim); }
unsigned int Size(unsigned int dim) const { if (dim > 4) return(0); else return(_dim[dim]);}
T Coef(unsigned int x, unsigned int y=0, unsigned int z=0) const
{
std::vector<unsigned int> indx(3,0);
indx[0] = x; indx[1] = y; indx[2] = z;
return(Coef(indx));
}
T Coef(std::vector<unsigned int> indx) const;
NEWMAT::ReturnMatrix CoefAsNewmatMatrix() const;
NEWMAT::ReturnMatrix KernelAsNewmatMatrix(double sp=0.1, unsigned int deriv=0) const;
//
// Here we declare nested helper-class SplineColumn
//
class SplineColumn
{
public:
// Constructor
SplineColumn(unsigned int sz, unsigned int step) : _sz(sz), _step(step) { _col = new double[_sz]; }
// Destructor
~SplineColumn() { delete [] _col; }
// Extract a column from a volume
void Get(const T *dp)
{
for (unsigned int i=0; i<_sz; i++, dp+=_step) _col[i] = static_cast<double>(*dp);
}
// Insert column into volume
void Set(T *dp) const
if (test == 1) { // If T is not float or double
for (unsigned int i=0; i<_sz; i++, dp+=_step) *dp = static_cast<T>(_col[i] + 0.5); // Round to nearest integer
}
else {
for (unsigned int i=0; i<_sz; i++, dp+=_step) *dp = static_cast<T>(_col[i]);
}
}
// Deconvolve column
void Deconv(unsigned int order, ExtrapolationType et, double prec);
private:
unsigned int _sz;
unsigned int _step;
double *_col;
unsigned int get_poles(unsigned int order, double *z, unsigned int *sf) const;
double init_bwd_sweep(double z, double lv, ExtrapolationType et, double prec) const;
double init_fwd_sweep(double z, ExtrapolationType et, double prec) const;
SplineColumn(const SplineColumn& sc); // Don't allow copy-construction
SplineColumn& operator=(const SplineColumn& sc); // Dont allow assignment
};
//
// Here ends nested helper-class SplineColumn
//
private:
bool _valid; // Decides if neccessary information has been set or not
bool _own_coef; // Decides if we "own" (have allocated) _coef
T *_coef; // Volume of spline coefficients
const T *_cptr; // Pointer to constant data. Used instead of _coef when we don't copy the data
unsigned int _order; // Order of splines
unsigned int _ndim; // # of non-singleton dimensions
double _prec; // Precision when dealing with edges
std::vector<unsigned int> _dim; // Dimensions of data
std::vector<ExtrapolationType> _et; // How to do extrapolation
//
// Private helper-functions
//
void common_construction(const T *data, const std::vector<unsigned int>& dim, unsigned int order, double prec, const std::vector<ExtrapolationType>& et, bool copy);
void assign(const Splinterpolator<T>& src);
bool calc_coef(const T *data, bool copy);
void deconv_along(unsigned int dim);
T coef(int *indx) const;
const T* coef_ptr() const {if (_own_coef) return(_coef); else return(_cptr); }
unsigned int indx2indx(int indx, unsigned int d) const;
unsigned int indx2linear(int k, int l, int m) const;
unsigned int add2linear(unsigned int lin, int j) const;
double value_at(const double *coord) const;
double value_and_derivatives_at(const double *coord, const unsigned int *deriv, double *dval) const;
void derivatives_at_i(const unsigned int *indx, const unsigned int *deriv, double *dval) const;
unsigned int get_start_indicies(const double *coord, int *sinds) const;
unsigned int get_start_indicies_at_i(const unsigned int *indx, int *sinds) const;
unsigned int get_wgts(const double *coord, const int *sinds, double **wgts) const;
unsigned int get_wgts_at_i(const unsigned int *indx, const int *sinds, double **wgts) const;
unsigned int get_dwgts(const double *coord, const int *sinds, const unsigned int *deriv, double **dwgts) const;
unsigned int get_dwgts_at_i(const unsigned int *indx, const int *sinds, const unsigned int *deriv, double **dwgts) const;
double get_wgt(double x) const;
double get_wgt_at_i(int i) const;
double get_dwgt(double x) const;
double get_dwgt_at_i(int i) const;
void get_dwgt1(const double * const *wgts, const double * const *dwgts, const unsigned int *dd, unsigned int nd,
unsigned int k, unsigned int l, unsigned int m, double wgt1, double *dwgt1) const;
std::pair<double,double> range() const;
bool should_be_zero(const double *coord) const;
unsigned int n_nonzero(const unsigned int *vec) const;
bool odd(unsigned int i) const {return(static_cast<bool>(i%2));}
bool even(unsigned int i) const {return(!odd(i));}
//
// Disallowed member functions
//
// Splinterpolator(const Splinterpolator& s); // Don't allow copy-construction
// Splinterpolator& operator=(const Splinterpolator& s); // Don't allow assignment
/////////////////////////////////////////////////////////////////////
//
// Here starts public member functions for Splinterpolator
//
/////////////////////////////////////////////////////////////////////
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value at location coord.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(const std::vector<float>& coord) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (coord.size() != _ndim) throw SplinterpolatorException("operator(): coord has wrong length");
double dcoord[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<coord.size(); i++) dcoord[i] = coord[i];
return(static_cast<T>(value_at(dcoord)));
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and a single derivative at location coord.
// The derivative should be specified as the # of the dimension
// (starting at zero) that you want it along.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(const std::vector<float>& coord, unsigned int dd, T *dval) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (coord.size() != _ndim) throw SplinterpolatorException("operator(): coord has wrong length");
if (dd > (_ndim-1)) throw SplinterpolatorException("operator(): derivative specified for invalid direction");
double dcoord[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<coord.size(); i++) dcoord[i] = coord[i];
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
double ddval = 0.0;
T rval;
rval = static_cast<T>(value_and_derivatives_at(dcoord,deriv,&ddval));
*dval = static_cast<T>(ddval);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and a single derivative at location
// given by x, y and . The derivative should be specified as the #
// of the dimension (starting at zero) that you want it along.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(double x, double y, double z, unsigned int dd, T *dval) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (_ndim>3 || (z && _ndim<3) || (y && _ndim<2)) throw SplinterpolatorException("operator(): input has wrong dimensionality");
if (dd > (_ndim-1)) throw SplinterpolatorException("operator(): derivative specified for invalid direction");
double coord[5] = {x,y,z,0.0,0.0};
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
double ddval = 0.0;
T rval;
rval = static_cast<T>(value_and_derivatives_at(coord,deriv,&ddval));
*dval = static_cast<T>(ddval);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and selected (by deriv) derivatives
// at location given by coord. The interpolated value is the return
// value and the derivatives are returned in rderiv. The input
// deriv should be an _ndim long vector where a 1 indicates that
// the derivative is required in that direction and a zero that it
// is not.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::ValAndDerivs(const std::vector<float>& coord, const std::vector<unsigned int>& deriv, std::vector<T>& rderiv) const
{
if (!_valid) throw SplinterpolatorException("ValAndDerivs: Cannot interpolate un-initialized object");
if (coord.size() != _ndim || deriv.size() != _ndim) throw SplinterpolatorException("ValAndDerivs: input has wrong dimensionality");
double lcoord[5] = {0.0,0.0,0.0,0.0,0.0};
unsigned int lderiv[5] = {0,0,0,0,0};
unsigned int nd = 0;
for (unsigned int i=0; i<coord.size(); i++) { lcoord[i] = coord[i]; nd += (lderiv[i]=(deriv[i])?1:0); }
if (rderiv.size()!=nd) SplinterpolatorException("ValAndDerivs: mismatch between deriv and rderiv");
double dval[5];
T rval = static_cast<T>(value_and_derivatives_at(lcoord,lderiv,dval));
for (unsigned int i=0; i<nd; i++) rderiv[i] = static_cast<T>(dval[i]);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and derivatives in the x, y and z
// directions at a location given by x, y and z. The interpolated
// value is the return value and the derivatives are returned in rderiv.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::ValAndDerivs(double x, double y, double z, std::vector<T>& rderiv) const
{
if (!_valid) throw SplinterpolatorException("ValAndDerivs: Cannot interpolate un-initialized object");
if (_ndim != 3 || rderiv.size() != _ndim) throw SplinterpolatorException("ValAndDerivs: input has wrong dimensionality");
double coord[5] = {x,y,z,0.0,0.0};
unsigned int deriv[5] = {1,1,1,0,0};
double dval[3];
T rval = static_cast<T>(value_and_derivatives_at(coord,deriv,dval));
for (unsigned int i=0; i<3; i++) rderiv[i] = static_cast<T>(dval[i]);
return(rval);
}
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/////////////////////////////////////////////////////////////////////
//
// Routine that returns a 3D gradient at an integer location.
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// Routine that returns a single derivative at an integer location.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::Deriv(const std::vector<unsigned int>& indx, unsigned int dd) const
{
if (!_valid) throw SplinterpolatorException("Deriv: Cannot take derivative of un-initialized object");
if (indx.size() != _ndim) SplinterpolatorException("Deriv: Input indx of wrong dimension");
if (dd > (_ndim-1)) throw SplinterpolatorException("Deriv: derivative specified for invalid direction");
double dval;
unsigned int lindx[5] = {0,0,0,0,0};
unsigned int deriv[5] = {0,0,0,0,0};
for (unsigned int i=0; i<_ndim; i++) lindx[i]=indx[i];
deriv[dd] = 1;
derivatives_at_i(lindx,deriv,&dval);
return(static_cast<T>(dval));
}
template<class T>
T Splinterpolator<T>::DerivXYZ(unsigned int i, unsigned int j, unsigned int k, unsigned int dd) const
{
if (!_valid) throw SplinterpolatorException("DerivXYZ: Cannot take derivative of un-initialized object");
if (_ndim!=3 || dd>2) throw SplinterpolatorException("DerivXYZ: Input has wrong dimensionality");
double dval;
unsigned int lindx[5] = {i,j,k,0,0};
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
derivatives_at_i(lindx,deriv,&dval);
return(static_cast<T>(dval));
}
template<class T>
void Splinterpolator<T>::Grad3D(unsigned int i, unsigned int j, unsigned int k, T *xg, T *yg, T *zg) const
{
if (!_valid) throw SplinterpolatorException("Grad3D: Cannot take derivative of un-initialized object");
if (_ndim != 3) SplinterpolatorException("Grad3D: Input of wrong dimension");
unsigned int lindx[5] = {i,j,k,0,0};
unsigned int deriv[5] = {1,1,1,0,0};
double dval[5] = {0.0,0.0,0.0,0.0,0.0};
derivatives_at_i(lindx,deriv,dval);
*xg=static_cast<T>(dval[0]); *yg=static_cast<T>(dval[1]); *zg=static_cast<T>(dval[2]);
return;
}
template<class T>
void Splinterpolator<T>::Grad(const std::vector<unsigned int>& indx, std::vector<T>& grad) const
{
if (!_valid) throw SplinterpolatorException("Grad: Cannot take derivative of un-initialized object");
if (indx.size() != _ndim || grad.size() != _ndim) SplinterpolatorException("Grad: Input indx or grad of wrong dimension");
unsigned int lindx[5] = {0,0,0,0,0};
unsigned int deriv[5] = {0,0,0,0,0};
double dval[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<_ndim; i++) { lindx[i]=indx[i]; deriv[i]=1; }
derivatives_at_i(lindx,deriv,dval);
for (unsigned int i=0; i<_ndim; i++) grad[i] = static_cast<T>(dval[i]);
return;
}
/////////////////////////////////////////////////////////////////////
//
// Returns the value of the coefficient given by indx (zero-offset)
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::Coef(std::vector<unsigned int> indx) const
{
if (!_valid) throw SplinterpolatorException("Coef: Cannot get coefficients for un-initialized object");
if (!indx.size()) throw SplinterpolatorException("Coef: indx has zeros dimensions");
if (indx.size() > 5) throw SplinterpolatorException("Coef: indx has more than 5 dimensions");
for (unsigned int i=0; i<indx.size(); i++) if (indx[i] >= _dim[i]) throw SplinterpolatorException("Coef: indx out of range");
unsigned int lindx=indx[indx.size()-1];
for (int i=indx.size()-2; i>=0; i--) lindx = _dim[i]*lindx + indx[i];
}
/////////////////////////////////////////////////////////////////////
//
// Returns the values of all coefficients as a Newmat matrix. If
// _ndim==1 it will return a row-vector, if _ndim==2 it will return
// a matrix, if _ndim==3 it will return a tiled matrix where the n
// first rows (where n is the number of rows in one slice) pertain to
// the first slice, the next n rows to the second slice, etc. And
// correspondingly for 4- and 5-D.
//
/////////////////////////////////////////////////////////////////////
template<class T>
NEWMAT::ReturnMatrix Splinterpolator<T>::CoefAsNewmatMatrix() const
{
if (!_valid) throw SplinterpolatorException("CoefAsNewmatMatrix: Cannot get coefficients for un-initialized object");
NEWMAT::Matrix mat(_dim[1]*_dim[2]*_dim[3]*_dim[4],_dim[0]);
std::vector<unsigned int> cindx(5,0);
unsigned int r=0;
for (cindx[4]=0; cindx[4]<_dim[4]; cindx[4]++) {
for (cindx[3]=0; cindx[3]<_dim[3]; cindx[3]++) {
for (cindx[2]=0; cindx[2]<_dim[2]; cindx[2]++) {
for (cindx[1]=0; cindx[1]<_dim[1]; cindx[1]++, r++) {
for (cindx[0]=0; cindx[0]<_dim[0]; cindx[0]++) {
mat.element(r,cindx[0]) = Coef(cindx);
}
}
}
}
}
mat.Release();
return(mat);
}
/////////////////////////////////////////////////////////////////////
//
// Return the kernel matrix to verify its correctness.
//
/////////////////////////////////////////////////////////////////////
template<class T>
NEWMAT::ReturnMatrix Splinterpolator<T>::KernelAsNewmatMatrix(double sp, // Distance (in ksp) between points
unsigned int deriv) const // Derivative (only 0/1 implemented).
if (!_valid) throw SplinterpolatorException("KernelAsNewmatMatrix: Cannot get kernel for un-initialized object");
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
if (deriv > 1) throw SplinterpolatorException("KernelAsNewmatMatrix: only 1st derivatives implemented");
std::pair<double,double> rng = range();
unsigned int i=0;
for (double x=rng.first; x<=rng.second; x+=sp, i++) ; // Intentional
NEWMAT::Matrix kernel(i,2);
for (double x=rng.first, i=0; x<=rng.second; x+=sp, i++) {
kernel.element(i,0) = x;
kernel.element(i,1) = (deriv) ? get_dwgt(x) : get_wgt(x);
}
kernel.Release();
return(kernel);
}
/////////////////////////////////////////////////////////////////////
//
// Here starts public member functions for SplineColumn
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// This function implements the forward and backwards sweep
// as defined by equation 2.5 in Unsers paper:
//
// B-spline signal processing. II. Efficiency design and applications
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::SplineColumn::Deconv(unsigned int order, ExtrapolationType et, double prec)
{
double z[3] = {0.0, 0.0, 0.0}; // Poles
unsigned int np = 0; // # of poles
unsigned int sf; // Scale-factor
np = get_poles(order,z,&sf);
for (unsigned int p=0; p<np; p++) {
_col[0] = init_fwd_sweep(z[p],et,prec);
double lv = _col[_sz-1];
// Forward sweep
double *ptr=&_col[1];
for (unsigned int i=1; i<_sz; i++, ptr++) *ptr += z[p] * *(ptr-1);
_col[_sz-1] = init_bwd_sweep(z[p],lv,et,prec);
// Backward sweep
ptr = &_col[_sz-2];
for (int i=_sz-2; i>=0; i--, ptr--) *ptr = z[p]*(*(ptr+1) - *ptr);
}
double *ptr=_col;
for (unsigned int i=0; i<_sz; i++, ptr++) *ptr *= sf;
}
/////////////////////////////////////////////////////////////////////
//
// Here starts private member functions for Splinterpolator
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// Returns the interpolated value at location given by coord.
// coord must be a pointer to an array of indicies with _ndim
// values.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::value_at(const double *coord) const
{
if (should_be_zero(coord)) return(0.0);
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
int inds[5];
unsigned int ni = 0;
ni = get_start_indicies(coord,inds);
get_wgts(coord,inds,wgts);
double val=0.0;
for (int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
for (int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
for (int i=0; i<static_cast<int>(ni); i++) {
int cindx[] = {inds[0]+i,inds[1]+j,inds[2]+k,inds[3]+l,inds[4]+m};
val += coef(cindx)*wgts[0][i]*wgt2;
}
}
}
}
}
return(val);
}
*/
template<class T>
double Splinterpolator<T>::value_at(const double *coord) const
{
if (should_be_zero(coord)) return(0.0);
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
int inds[5];
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies(coord,inds);
if (coord[0] < -1 && coord[0] > -2 && coord[1] < 89 && coord[1] > 88 && coord[2] < 65 && coord[2] > 64) {
for (unsigned int i=0; i<ni; i++) printf("coord[%d] = %f\n",i,coord[i]);
for (unsigned int i=0; i<ni; i++) printf("inds[%d] = %d\n",i,inds[i]);
for (int j=0; j<3; j++) {
for (int i=0; i<4; i++) {
printf("wgts[%d] = %f\n",j*4+i,wgts[j][i]);
}
}
double val=0.0;
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
if (coord[0] < -1 && coord[0] > -2 && coord[1] < 89 && coord[1] > 88 && coord[2] < 65 && coord[2] > 64) {
int ii = linear2+indx2indx(inds[0]+i,0);
// printf("i = %d, j = %d, k = %d, ii = %d, wgt2 = %f, wgts[%d] = %f\n",i,j,k,ii,wgt2,i,*iiwgt);
val += cptr[linear2+indx2indx(inds[0]+i,0)]*(*iiwgt)*wgt2;
}
}
}
}
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the interpolated value and selected derivatives at a
// location given by coord. coord must be a pointer to an array
// of voxel indicies with _ndim values. deriv must be a pointer
// to an _ndim long array of 0/1 specifying if the derivative is
// requested in that direction or not.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::value_and_derivatives_at(const double *coord,
const unsigned int *deriv,
double *dval)
const
{
if (should_be_zero(coord)) { memset(dval,0,n_nonzero(deriv)*sizeof(double)); return(0.0); }
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
double diwgt[8], djwgt[8], dkwgt[8], dlwgt[8], dmwgt[8];
double *dwgts[] = {diwgt, djwgt, dkwgt, dlwgt, dmwgt};
double dwgt1[5];
double dwgt2[5];
int inds[5];
unsigned int dd[5];
unsigned int nd = 0;
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies(coord,inds);
get_wgts(coord,inds,wgts);
get_dwgts(coord,inds,deriv,dwgts);
for (unsigned int i=0; i<_ndim; i++) if (deriv[i]) { dd[nd] = i; dval[nd++] = 0.0; }
double val=0.0;
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
get_dwgt1(wgts,dwgts,dd,nd,k,l,m,wgt1,dwgt1);
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
for (unsigned int d=0; d<nd; d++) dwgt2[d] = (dd[d]==1) ? dwgt1[d]*dwgts[1][j] : dwgt1[d]*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
double c = cptr[linear2+indx2indx(inds[0]+i,0)];
val += c*(*iiwgt)*wgt2;
for (unsigned int d=0; d<nd; d++) {
double add = (dd[d]==0) ? c*diwgt[i]*dwgt2[d] : c*(*iiwgt)*dwgt2[d];
dval[d] += add;
}
}
}
}
}
}
return(val);
}
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
template <class T>
void Splinterpolator<T>::derivatives_at_i(const unsigned int *indx,
const unsigned int *deriv,
double *dval)
const
{
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
double diwgt[8], djwgt[8], dkwgt[8], dlwgt[8], dmwgt[8];
double *dwgts[] = {diwgt, djwgt, dkwgt, dlwgt, dmwgt};
double dwgt1[5];
double dwgt2[5];
int inds[5];
unsigned int dd[5];
unsigned int nd = 0;
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies_at_i(indx,inds);
get_wgts_at_i(indx,inds,wgts);
get_dwgts_at_i(indx,inds,deriv,dwgts);
for (unsigned int i=0; i<_ndim; i++) if (deriv[i]) { dd[nd] = i; dval[nd++] = 0.0; }
// double val=0.0;
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
get_dwgt1(wgts,dwgts,dd,nd,k,l,m,wgt1,dwgt1);
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
// double wgt2 = wgt1*wgts[1][j];
for (unsigned int d=0; d<nd; d++) dwgt2[d] = (dd[d]==1) ? dwgt1[d]*dwgts[1][j] : dwgt1[d]*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
double c = cptr[linear2+indx2indx(inds[0]+i,0)];
// val += c*(*iiwgt)*wgt2;
for (unsigned int d=0; d<nd; d++) {
double add = (dd[d]==0) ? c*diwgt[i]*dwgt2[d] : c*(*iiwgt)*dwgt2[d];
dval[d] += add;
}
}
}
}
}
}
// return(val);
return;
}
/////////////////////////////////////////////////////////////////////
//
// Returns (in sinds) the indicies of the first coefficient in all
// _ndim directions with a non-zero weight for the location given
// by coord. The caller is responsible for coord and sinds being
// valid pointers to arrays of 5 values.
// The return-value gives the total # of non-zero weights.
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::get_start_indicies(const double *coord, int *sinds) const
{
unsigned int ni = _order+1;
if (odd(ni)) {
for (unsigned int i=0; i<_ndim; i++) {
sinds[i] = static_cast<int>(coord[i]+0.5) - ni/2;
}
}
else {
for (unsigned int i=0; i<_ndim; i++) {
int ix = static_cast<int>(coord[i]+0.5);
if (ix < coord[i]) sinds[i] = ix - (ni-1)/2;
else sinds[i] = ix -ni/2;
}
}
for (unsigned int i=_ndim; i<5; i++) sinds[i] = 0;
return(ni);
}
// Does the same thing, but for integer (spot on voxel centre) index
template<class T>
unsigned int Splinterpolator<T>::get_start_indicies_at_i(const unsigned int *indx, int *sinds) const
{
unsigned int ni = (odd(_order)) ? _order : _order+1;
for (unsigned int i=0; i<_ndim; i++) {
sinds[i] = indx[i] - (_order/2);
}
for (unsigned int i=_ndim; i<5; i++) sinds[i] = 0;
return(ni);
}
/////////////////////////////////////////////////////////////////////
//
// Returns (in wgts) the weights for the coefficients given by sinds
// for the location given by coord.
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::get_wgts(const double *coord, const int *sinds, double **wgts) const
{
unsigned int ni = _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
wgts[dim][i] = get_wgt(coord[dim]-(sinds[dim]+int(i)));
}
}
for (unsigned int dim=_ndim; dim<5; dim++) wgts[dim][0] = 1.0;
return(ni);
}
// Same for integer (spot on voxel centre) index
template<class T>
unsigned int Splinterpolator<T>::get_wgts_at_i(const unsigned int *indx, const int *sinds, double **wgts) const
{
unsigned int ni = (odd(_order)) ? _order : _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
wgts[dim][i] = get_wgt_at_i(indx[dim]-(sinds[dim]+int(i)));
}
}
for (unsigned int dim=_ndim; dim<5; dim++) wgts[dim][0] = 1.0;
return(ni);
}
template<class T>
unsigned int Splinterpolator<T>::get_dwgts(const double *coord, const int *sinds, const unsigned int *deriv, double **dwgts) const
{
unsigned int ni = _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
if (deriv[dim]) {
switch (_order) {
case 0:
throw SplinterpolatorException("get_dwgts: invalid order spline");
case 1:
dwgts[dim][0] = -1; dwgts[dim][1] = 1; // Not correct on original gridpoints
break;
case 2: case 3: case 4: case 5: case 6: case 7:
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
dwgts[dim][i] = get_dwgt(coord[dim]-(sinds[dim]+int(i)));
}
break;
default:
throw SplinterpolatorException("get_dwgts: invalid order spline");
}
}
}
return(ni);
}
// Same for integer (spot on voxel centre) index
template<class T>
unsigned int Splinterpolator<T>::get_dwgts_at_i(const unsigned int *indx, const int *sinds, const unsigned int *deriv, double **dwgts) const
{
unsigned int ni = (odd(_order)) ? _order : _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
if (deriv[dim]) {
switch (_order) {
case 0: case 1:
throw SplinterpolatorException("get_dwgts_at_i: invalid order spline");
case 2: case 3: case 4: case 5: case 6: case 7:
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
dwgts[dim][i] = get_dwgt_at_i(indx[dim]-(sinds[dim]+int(i)));
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
}
break;
default:
throw SplinterpolatorException("get_dwgts_at_i: invalid order spline");
}
}
}
return(ni);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for a spline at integer index i, where i is
// relative to the centre index of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_wgt_at_i(int i) const
{
double val = 0.0;
int ai = std::abs(i);
switch (_order) {
case 0: case 1:
val = (ai) ? 1.0 : 0.0;
break;
case 2:
if (!ai) val = 0.75;
else if (ai==1) val = 0.125;
break;
case 3:
if (!ai) val = 0.666666666666667;
else if (ai==1) val = 0.166666666666667;
break;
case 4:
if (!ai) val = 0.598958333333333;
else if (ai==1) val = 0.197916666666667;
else if (ai==2) val = 0.002604166666667;
break;
case 5:
if (!ai) val = 0.55;
else if (ai==1) val = 0.216666666666667;
else if (ai==2) val = 0.008333333333333;
break;
case 6:
if (!ai) val = 0.511024305555556;
else if (ai==1) val = 0.228797743055556;
else if (ai==2) val = 0.015668402777779;
else if (ai==3) val = 8.680555555555556e-05;
break;
case 7:
if (!ai) val = 0.479365079365079;
else if (ai==1) val = 0.236309523809524;
else if (ai==2) val = 0.023809523809524;
else if (ai==3) val = 1.984126984126984e-04;
break;
default:
throw SplinterpolatorException("get_wgt_at_i: invalid order spline");
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for the first derivative of a spline at integer
// index i, where i is relative to the centre index of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_dwgt_at_i(int i) const
{
double val = 0.0;
int ai = std::abs(i);
int sign = (ai) ? i/ai : 1;
switch (_order) {
case 0: case 1:
throw SplinterpolatorException("get_dwgt: invalid order spline");
case 2:
if (!ai) val = 0.0;
else if (ai==1) val = sign * (-0.5);
break;
case 3:
if (!ai) val = 0.0;
else if (ai==1) val = sign * (-0.5);
break;
case 4:
if (!ai) val = 0.0;
else if (ai==1) val = sign * (-0.458333333333333);
else if (ai==2) val = sign * (-0.020833333333333);
break;
case 5:
if (!ai) val = 0.0;
else if (ai==1) val = sign * (-0.416666666666667);
else if (ai==2) val = sign * (-0.041666666666667);
break;
case 6:
if (!ai) val = 0.0;
else if (ai==1) val = sign * (-0.376302083333333);
else if (ai==2) val = sign * (-0.061458333333334);
else if (ai==3) val = sign * (-2.604166666666667e-04);
break;
case 7:
if (!ai) val = 0.0;
else if (ai==1) val = sign * (-0.340277777777778);
else if (ai==2) val = sign * (-0.077777777777778);
else if (ai==3) val = sign * (-0.001388888888889);
break;
default:
throw SplinterpolatorException("get_dwgt_at_i: invalid order spline");
}
return(val);
}
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for a spline at coordinate x, where x is relative
// to the centre of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_wgt(double x) const
{
double val = 0.0;
double ax = abs(x); // Kernels all symmetric
switch (_order) {
case 0:
if (ax < 0.5) val = 1.0;
break;
case 1:
if (ax < 1) val = 1-ax;;
break;
case 2:
if (ax < 0.5) val = 0.75-ax*ax;
else if (ax < 1.5) val = 0.5*(1.5-ax)*(1.5-ax);
break;
case 3:
if (ax < 1) val = 2.0/3.0 + 0.5*ax*ax*(ax-2);
else if (ax < 2) { ax = 2-ax; val = (1.0/6.0)*(ax*ax*ax); }
break;
case 4:
if (ax < 0.5) { ax *= ax; val = (115.0/192.0) + ax*((2.0*ax-5.0)/8.0); }
else if (ax < 1.5) val = (55.0/96.0) + ax*(ax*(ax*((5.0-ax)/6.0) - 1.25) + 5.0/24.0);
else if (ax < 2.5) { ax -= 2.5; ax *= ax; val = (1.0/24.0)*ax*ax; }
break;
case 5:
if (ax < 1) { double xx = ax*ax; val = 0.55 + xx*(xx*((3.0-ax)/12.0) - 0.5); }
else if (ax < 2) val = 0.425 + ax*(ax*(ax*(ax*((ax-9.0)/24.0) + 1.25) - 1.75) + 0.625);
else if (ax < 3) { ax = 3-ax; double xx = ax*ax; val = (1.0/120.0)*ax*xx*xx; }
break;
case 6:
if (ax < 0.5) { ax *= ax; val = (5887.0/11520.0) + ax*(ax*((21.0-4.0*ax)/144.0) -77.0/192.0); }
else if (ax < 1.5) val = 7861.0/15360.0 + ax*(ax*(ax*(ax*(ax*((ax - 7.0)/48.0) + 0.328125) - 35.0/288.0) - 91.0/256.0) -7.0/768.0);
else if (ax < 2.5) val = 1379.0/7680.0 + ax*(ax*(ax*(ax*(ax*((14.0-ax)/120.0) - 0.65625) + 133.0/72.0) - 2.5703125) + 1267.0/960.0);
else if (ax < 3.5) { ax -= 3.5; ax *= ax*ax; val = (1.0/720.0) * ax*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = 151.0/315.0 + xx*(xx*(xx*((ax-4.0)/144.0) + 1.0/9.0) - 1.0/3.0); }
else if (ax < 2) val = 103.0/210.0 + ax*(ax*(ax*(ax*(ax*(ax*((12.0-ax)/240.0) -7.0/30.0) + 0.5) - 7.0/18.0) - 0.1) -7.0/90.0);
else if (ax < 3) val = ax*(ax*(ax*(ax*(ax*(ax*((ax-20.0)/720.0) + 7.0/30.0) - 19.0/18.0) + 49.0/18.0) - 23.0/6.0) + 217.0/90.0) - 139.0/630.0;
else if (ax < 4) { ax = 4-ax; double xxx=ax*ax*ax; val = (1.0/5040.0)*ax*xxx*xxx; }
break;
default:
throw SplinterpolatorException("get_wgt: invalid order spline");
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for the first derivative of a spline at
// coordinate x, where x is relative to the centre of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_dwgt(double x) const
{
double val = 0.0;
double ax = abs(x); // Kernels all anti-symmetric
int sign = (ax) ? static_cast<int>(x/ax) : 1; // Arbitrary choice for when x=0
switch (_order) {
throw SplinterpolatorException("get_dwgt: invalid order spline");
case 2:
if (ax < 0.5) val = sign * -2.0*ax;
else if (ax < 1.5) val = sign * (-1.5 + ax);
break;
case 3:
if (ax < 1) val = sign * (1.5*ax*ax - 2.0*ax);
else if (ax < 2) { ax = 2-ax; val = sign * -0.5*ax*ax; }
break;
case 4:
if (ax < 0.5) val = sign * (ax*ax*ax - 1.25*ax);
else if (ax < 1.5) val = sign * (5.0/24.0 - ax*(2.5 - ax*(2.5 - (2.0/3.0)*ax)));
else if (ax < 2.5) { ax -= 2.5; val = sign * (1.0/6.0)*ax*ax*ax; }
break;
case 5:
if (ax < 1) val = sign * ax*(ax*(ax*(1-(5.0/12.0)*ax)) - 1);
else if (ax < 2) val = sign * (0.625 - ax*(3.5 - ax*(3.75 - ax*(1.5 - (5.0/24.0)*ax))));
else if (ax < 3) { ax -= 3; ax = ax*ax; val = sign * (-1.0/24.0)*ax*ax; }
break;
case 6:
if (ax < 0.5) { double xx = ax*ax; val = sign * ax*(xx*((7.0/12) - (1.0/6.0)*xx) - (77.0/96.0)); }
else if (ax < 1.5) {double xx = ax*ax; val = sign * (ax*(xx*(0.1250*xx + 1.3125) - 0.7109375) - xx*((35.0/48.0)*xx + (35.0/96.0)) - (7.0/768.0)); }
else if (ax < 2.5) { double xx = ax*ax; val = sign * ((1267.0/960.0) - ax*(xx*(0.05*xx + (21.0/8.0)) + (329.0/64.0)) + xx*((7.0/12.0)*xx + (133.0/24.0))); }
else if (ax < 3.5) { ax -= 3.5; double xx = ax*ax; val = sign * (1.0/120.0)*xx*xx*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = sign * ax*(xx*(xx*((7.0/144.0)*ax - (1.0/6.0)) + 4.0/9.0) - 2.0/3.0); }
else if (ax < 2) { double xx = ax*ax; val = sign * (ax*(xx*(xx*0.3 + 2.0) - 0.2) - xx*(xx*(xx*(7.0/240.0) + (7.0/6.0)) + (7.0/6.0)) - (7.0/90.0)); }
else if (ax < 3) { double xx = ax*ax; val = sign * (1.0/720.0)*(xx - 4.0*ax + 2.0)*(7.0*xx*xx - 92.0*xx*ax + 458.0*xx - 1024.0*ax + 868.0); }
else if (ax < 4) { ax = 4-ax; ax = ax*ax*ax; val = sign * (-1.0/720.0)*ax*ax; }
break;
default:
throw SplinterpolatorException("get_dwgt: invalid order spline");
}
return(val);
}
template<class T>
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
inline void Splinterpolator<T>::get_dwgt1(const double * const *wgts, const double * const *dwgts,
const unsigned int *dd, unsigned int nd, unsigned int k,
unsigned int l, unsigned int m, double wgt1, double *dwgt1) const
{
for (unsigned int i=0; i<nd; i++) {
switch (dd[i]) {
case 2:
dwgt1[i] = wgts[4][m] * wgts[3][l] * dwgts[2][k];
break;
case 3:
dwgt1[i] = wgts[4][m] * dwgts[3][l] * wgts[2][k];
break;
case 4:
dwgt1[i] = dwgts[4][m] * wgts[3][l] * wgts[2][k];
break;
default:
dwgt1[i] = wgt1;
break;
}
}
}
template<class T>
inline std::pair<double,double> Splinterpolator<T>::range() const
{
std::pair<double,double> rng(0.0,0.0);
rng.second = static_cast<double>(_order+1.0)/2.0;
rng.first = - rng.second;
return(rng);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the value of the coefficient indexed by indx. Unlike the
// public Coef() this routine allows indexing outside the valid
// volume, returning values that are dependent on the extrapolation
// model when these are encountered.
//
// N.B. May change value of input index N.B.
//
/////////////////////////////////////////////////////////////////////

Jesper Andersson
committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
template<class T>
inline unsigned int Splinterpolator<T>::indx2indx(int indx, unsigned int d) const
{
if (d > (_ndim-1)) return(0);
// cout << "indx in = " << indx << endl;
if (indx < 0) {
switch (_et[d]) {
case Constant:
indx = 0;
break;
case Zeros: case Mirror:
indx = (indx%int(_dim[d])) ? -indx%int(_dim[d]) : 0;
break;
case Periodic:
indx = (indx%int(_dim[d])) ? _dim[d]+indx%int(_dim[d]) : 0;
break;
default:
break;
}
}
else if (indx >= static_cast<int>(_dim[d])) {
switch (_et[d]) {
case Constant:
indx = _dim[d]-1;
break;
case Zeros: case Mirror:
indx = 2*_dim[d] - (_dim[d]+indx%int(_dim[d])) - 2;
break;
case Periodic:
indx = indx%int(_dim[d]);
break;
default:
break;
}
}
// cout << "indx out = " << indx << endl;
return(indx);
}
// The next routine is defunct and will be moved out of this file.
/*
template<class T>
inline unsigned int Splinterpolator<T>::indx2indx(int indx, unsigned int d) const
{
if (d > (_ndim-1)) return(0);
if (indx < 0) {
switch (_et[d]) {
case Constant:
return(0);
break;
case Zeros: case Mirror:

Jesper Andersson
committed
return((indx%int(_dim[d])) ? -1-indx%int(_dim[d]) : _dim[d]-1);
return((indx%int(_dim[d])) ? _dim[d]+indx%int(_dim[d]) : 0);
break;
default:
break;
}
}
else if (indx >= static_cast<int>(_dim[d])) {
switch (_et[d]) {
case Constant:
return(_dim[d]-1);
break;
case Zeros: case Mirror:
return(2*_dim[d] - (_dim[d]+indx%int(_dim[d])) - 1);
return(indx%int(_dim[d]));
break;
default:
break;
}
}
return(indx);
}

Jesper Andersson
committed
*/
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
template<class T>
unsigned int Splinterpolator<T>::indx2linear(int k, int l, int m) const
{
if (_ndim < 3) return(0);
int lindx = 0;
if (_ndim>4) lindx = indx2indx(m,4);
if (_ndim>3) lindx = _dim[3]*lindx + indx2indx(l,3);
lindx = _dim[0]*_dim[1]*(_dim[2]*lindx + indx2indx(k,2));
return(lindx);
}
template<class T>
inline unsigned int Splinterpolator<T>::add2linear(unsigned int lin, int j) const
{
if (_ndim < 2) return(lin);
else return(lin + _dim[0]*indx2indx(j,1));
}
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
template<class T>
T Splinterpolator<T>::coef(int *indx) const
{
// First fix any outside-volume indicies
for (unsigned int i=0; i<_ndim; i++) {
if (indx[i] < 0) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
case Constant:
indx[i] = 0;
break;
case Mirror:
indx[i] = 1-indx[i];
break;
case Periodic:
indx[i] = _dim[i]+indx[i];
break;
default:
break;
}
}
else if (indx[i] >= static_cast<int>(_dim[i])) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
case Constant:
indx[i] = _dim[i]-1;
break;
case Mirror:
indx[i] = 2*_dim[i]-indx[i]-1;
break;
case Periodic:
indx[i] = indx[i]-_dim[i];
break;
default:
break;
}
}
}
// Now make linear index
unsigned int lindx=indx[_ndim-1];
for (int i=_ndim-2; i>=0; i--) lindx = _dim[i]*lindx + indx[i];
return(coef_ptr()[lindx]);
}
template<class T>
bool Splinterpolator<T>::should_be_zero(const double *coord) const
{
for (unsigned int i=0; i<_ndim; i++) {
if (_et[i] == Zeros && (coord[i] < 0 || coord[i] > (_dim[i]-1))) return(true);
}
return(false);
}
template<class T>
unsigned int Splinterpolator<T>::n_nonzero(const unsigned int *vec) const
{
unsigned int n=0;
for (unsigned int i=0; i<_ndim; i++) if (vec[i]) n++;
return(n);
}
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when constructing a
// Splinterpolator object. Called by constructors and by .Set()
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::common_construction(const T *data, const std::vector<unsigned int>& dim, unsigned int order, double prec, const std::vector<ExtrapolationType>& et, bool copy)
{
if (!dim.size()) throw SplinterpolatorException("common_construction: data has zeros dimensions");
if (!dim.size() > 5) throw SplinterpolatorException("common_construction: data cannot have more than 5 dimensions");
if (dim.size() != et.size()) throw SplinterpolatorException("common_construction: dim and et must have the same size");
for (unsigned int i=0; i<dim.size(); i++) if (!dim[i]) throw SplinterpolatorException("common_construction: data cannot have zeros size in any direction");
if (order > 7) throw SplinterpolatorException("common_construction: spline order must be lesst than 7");
if (!data) throw SplinterpolatorException("common_construction: zero data pointer");
_order = order;
_prec = prec;
_dim.resize(5);
_ndim = dim.size();
for (unsigned int i=0; i<5; i++) _dim[i] = (i < dim.size()) ? dim[i] : 1;
_own_coef = calc_coef(data,copy);
_valid = true;
}
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when copy-constructing
// and when assigning.
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::assign(const Splinterpolator<T>& src)
{
_valid = src._valid;
_own_coef = src._own_coef;
_cptr = src._cptr;
_order = src._order;
_ndim = src._ndim;
_prec = src._prec;
_dim = src._dim;
_et = src._et;
if (_own_coef) { // If we need to do a deep copy
unsigned int ts = 1;
for (unsigned int i=0; i<_ndim; i++) ts *= _dim[i];
_coef = new T[ts];
memcpy(_coef,src._coef,ts*sizeof(T));
}
}
/////////////////////////////////////////////////////////////////////
//
// Performs deconvolution, converting signal to spline coefficients.
//
/////////////////////////////////////////////////////////////////////
template<class T>
bool Splinterpolator<T>::calc_coef(const T *data, bool copy)
if (_order < 2 && !copy) { _cptr = data; return(false); }
// Allocate memory and put the original data into _coef
unsigned int ts=1;
for (unsigned int i=0; i<_dim.size(); i++) ts *= _dim[i];
memcpy(_coef,data,ts*sizeof(T));
if (_order < 2) return(true); // If nearest neighbour or linear, that's all we need
// Loop over all non-singleton dimensions and deconvolve along them
//
std::vector<unsigned int> tdim(_dim.size()-1,0);
for (unsigned int cdir=0; cdir<_dim.size(); cdir++) {
if (_dim[cdir] > 1) deconv_along(cdir);
/////////////////////////////////////////////////////////////////////
//
// Performs deconvolution along one of the dimensions, visiting
// all points along the other dimensions.
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::deconv_along(unsigned int dim)
{
// Set up to reflect "missing" dimension
//
std::vector<unsigned int> rdim(4,1); // Sizes along remaining dimensions
std::vector<unsigned int> rstep(4,1); // Step-sizes (in "volume") of remaining dimensions
unsigned int mdim = 1; // Size along "missing" dimension
unsigned int mstep = 1; // Step-size along "missing" dimension
for (unsigned int i=0, j=0, ss=1; i<5; i++) {
if (i == dim) { // If it is our "missing" dimension
mdim = _dim[i];
mstep = ss;
}
else {
rdim[j] = _dim[i];
rstep[j++] = ss;
}
ss *= _dim[i];
}
SplineColumn col(mdim,mstep); // Column helps us do the job
for (unsigned int l=0; l<rdim[3]; l++) {
for (unsigned int k=0; k<rdim[2]; k++) {
for (unsigned int j=0; j<rdim[1]; j++) {
T *dp = _coef + l*rstep[3] + k*rstep[2] + j*rstep[1];
for (unsigned int i=0; i<rdim[0]; i++, dp+=rstep[0]) {
col.Get(dp); // Extract a column from the volume
col.Deconv(_order,_et[dim],_prec); // Deconvolve it
col.Set(dp); // Put back the deconvolved column
}
}
}
}
return;
}
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
/////////////////////////////////////////////////////////////////////
//
// Here starts private member functions for SplineColumn
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// This function returns the poles and scale-factors for splines
// of order 2--7. The values correspond to those found in
// table 1 in Unsers 1993 paper:
// B-spline signal processing. II. Efficiency design and applications
//
// The actual values have been taken from
// http://bigwww.epfl.ch/thevenaz/interpolation/coeff.c
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::SplineColumn::get_poles(unsigned int order, double *z, unsigned int *sf) const
{
unsigned int np = 0; // # of poles
switch (order) {
case 2:
np = 1;
z[0] = 2.0*sqrt(2.0) - 3.0;
*sf = 8;
break;
case 3:
np = 1;
z[0] = sqrt(3.0) - 2.0;
*sf = 6;
break;
case 4:
np = 2;
z[0] = sqrt(664.0 - sqrt(438976.0)) + sqrt(304.0) - 19.0;
z[1] = sqrt(664.0 + sqrt(438976.0)) - sqrt(304.0) - 19.0;
*sf = 384;
break;
case 5:
np = 2;
z[0] = sqrt(135.0 / 2.0 - sqrt(17745.0 / 4.0)) + sqrt(105.0 / 4.0) - 13.0 / 2.0;
z[1] = sqrt(135.0 / 2.0 + sqrt(17745.0 / 4.0)) - sqrt(105.0 / 4.0) - 13.0 / 2.0;
*sf = 120;
break;
case 6:
np = 3;
z[0] = -0.48829458930304475513011803888378906211227916123938;
z[1] = -0.081679271076237512597937765737059080653379610398148;
z[2] = -0.0014141518083258177510872439765585925278641690553467;
*sf = 46080;
break;
case 7:
np = 3;
z[0] = -0.53528043079643816554240378168164607183392315234269;
z[1] = -0.12255461519232669051527226435935734360548654942730;
z[2] = -0.0091486948096082769285930216516478534156925639545994;
*sf = 5040;
break;
default:
throw SplinterpolatorException("SplineColumn::get_poles: invalid order of spline");
}
return(np);
}
/////////////////////////////////////////////////////////////////////
//
// Initialises the first value for the forward sweep. The initialisation
// will always be an approximation (this is where the "infinite" in IIR
// breaks down) so the value will be calculated to a predefined precision.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::SplineColumn::init_fwd_sweep(double z, ExtrapolationType et, double prec) const
{
//
// Move logs away from here after debugging
//
unsigned int n = static_cast<unsigned int>((log(prec)/log(abs(z))) + 1.5);
n = (n > _sz) ? _sz : n;
double iv = _col[0];
if (et == Periodic) {
double *ptr=&_col[_sz-1];
double z2i=z;
for (unsigned int i=1; i<n; i++, ptr--, z2i*=z) iv += z2i * *ptr;
}
else {
double z2i=z;
for (unsigned int i=1; i<n; i++, ptr++, z2i*=z) iv += z2i * *ptr;
}
return(iv);
}
/////////////////////////////////////////////////////////////////////
//
// Initialises the first value for the backward sweep. The initialisation
// will always be an approximation (this is where the "infinite" in IIR
// breaks down) so the value will be calculated to a predefined precision.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::SplineColumn::init_bwd_sweep(double z, double lv, ExtrapolationType et, double prec) const
{
double iv = 0.0;
unsigned int n = static_cast<unsigned int>((log(prec)/log(abs(z))) + 1.5);
n = (n > _sz) ? _sz : n;
iv = z * _col[_sz-1];
double z2i = z*z;
double *ptr=_col;
for (unsigned int i=1; i<n; i++, ptr++, z2i*=z) {
iv += z2i * *ptr;
}
iv /= (z2i-1.0);
}
else {
iv = -z/(1.0-z*z) * (2.0*_col[_sz-1] - lv);
}
return(iv);
}
} // End namespace SPLINTERPOLATOR
#endif // End #ifndef splinterpolator.h