Newer
Older
// Definitions for module nonlin
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <vector>
#include <cmath>
#include "newmat.h"
#include "newmatio.h"
#include "bfmatrix.h"
#include "nonlin.h"
#include "utils/fsl_isfinite.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
using namespace std;
using namespace NEWMAT;
namespace MISCMATHS {
// Declarations of routines for use only in this module
// Main routine for Variable-Metric optimisation
NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo);
// Main routine for Conjugate-Gradient optimisation
NonlinOut congra(const NonlinParam& p, const NonlinCF& cfo);
// Main routine for scaled conjugate-gradient optimisation
NonlinOut sccngr(const NonlinParam& p, const NonlinCF& cfo);
// Main routine for Levenberg-Marquardt optimisation
NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo);
LinOut linsrch(// Input
const ColumnVector& pdir, // Search direction
const ColumnVector& p0, // Current parameter values
const ColumnVector& grad, // Gradient at p0
const NonlinCF& cfo, // Cost-function object
double f0, // Current cost-function value
double sf, // Scale factor for cost-function
double maxiter, // Max # of iterations in line minimisation
double sm, // Stepmax
double alpha, // Alpha (sorry).
double ptol, // Tolerance in parameter space
// Output
double *lambda,// Resulting step length
double *of, // Value of cost-function on output
ColumnVector *np); // New parameters
double scale_factor(const ColumnVector& p, // Current parameter values
const ColumnVector& pdir, // Search direction
const NonlinCF& cfo, // Cost-function object
int maxiter, // Max # of iterations
double sf); // Scale factor.
LinOut linmin(// Input
const ColumnVector& p, // Current parameter values
const ColumnVector& pdir, // Search direction
const NonlinCF& cfo, // Cost-function object
double sf, // Scale factor for cost-function
pair<double,double> lp, // Left point
pair<double,double> mp, // Point somewhere in interval
pair<double,double> rp, // Right point
double ftol, // Fractional tolerance
int maxiter,// Max # of iterations
// Output
pair<double,double> *x); // Best point
pair<double,double> bracket(// Input
const ColumnVector& p, // Current parameter values
const ColumnVector& pdir, // Search direction
const NonlinCF& cfo, // Cost-function object
double ptol, // Relative tolerance for parameter values
double sf, // Scale factor of cost-function
// Output
pair<double,double> *p_0, // Cost-function value at p
pair<double,double> *p_m); // Point between p_0 and p_l
// Utility routine that checks for convergence based on "zero"-gradient
// Utility routines that checks for convergence based on various criteria
// Based on zero (neglible) gradient
bool zero_grad_conv(const ColumnVector& par,
const ColumnVector& grad,
double cf,
double gtol);
// Based on zero (neglible) decrease in cost-function
bool zero_cf_diff_conv(double cfo,
double cfn,
double cftol);
// Based on zero (neglible) step in parameter space
bool zero_par_step_conv(const ColumnVector& par,
const ColumnVector& step,
double ptol);
void print_newmat(const NEWMAT::GeneralMatrix& m,
std::string fname);
// If user choses not to overide the grad-method of the NonlinCF
// base class this routine will be used to calculate numerical derivatives.
ReturnMatrix NonlinCF::grad(const ColumnVector& p) const
{
ColumnVector gradv(p.Nrows());
ColumnVector tmpp = p;
double tiny = 1e-8;
double cf0 = cf(tmpp);
for (int i=0; i<p.Nrows(); i++) {

Jesper Andersson
committed
double step = tiny * std::max(tmpp.element(i),1.0);
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
tmpp.element(i) += step;
gradv.element(i) = (cf(tmpp) - cf0) / step;
tmpp.element(i) -= step;
}
gradv.Release();
return(gradv);
}
// If user choses not to overide the hess-method of the NonlinCF
// base class this routine will calculate numerical 2nd derivatives.
// Note also that the hessian will only be used for the Levenberg-
// Marquardt minimisation.
// It is in general _not_ a good idea to use a method that explicitly
// uses the Hessian (i.e. LM) when calculating it numerically.
// Note that it returns a (safe) pointer to BFMatrix. BFMatrix has two
// subclasses FullBFMatrix, and SparseBFMatrix which can be used
// used interchangeably depending on if the structure of the Hessian
// renders it sparse or not.
boost::shared_ptr<BFMatrix> NonlinCF::hess(const ColumnVector& p,
boost::shared_ptr<BFMatrix> iptr) const
{
boost::shared_ptr<BFMatrix> hessm;
if (iptr && int(iptr->Nrows())==p.Nrows() && int(iptr->Ncols())==p.Nrows()) hessm = iptr;
else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));
ColumnVector tmpp = p;
double tiny = 1e-4;
double fx0y0 = cf(tmpp);
ColumnVector fdx(p.Nrows());
ColumnVector step(p.Nrows());
// First calculate all f(x+dx_i) values
for (int i=0; i<p.Nrows(); i++) {

Jesper Andersson
committed
step.element(i) = tiny * std::max(tmpp.element(i),1.0);
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
tmpp.element(i) += step.element(i);
fdx.element(i) = cf(tmpp);
tmpp.element(i) -= step.element(i);
}
// Then values of matrix
for (int i=0; i<p.Nrows(); i++) {
for (int j=i; j<p.Nrows(); j++) {
if (i==j) { // If diagonal element
tmpp.element(i) -= step.element(i);
double tmp = cf(tmpp);
hessm->Set(i+1,i+1,(fdx.element(i) + tmp - 2.0*fx0y0) / (step.element(i)*step.element(i)));
tmpp.element(i) += step.element(i);
}
else { // If off-diagonal element
tmpp.element(i) += step.element(i);
tmpp.element(j) += step.element(j);
hessm->Set(i+1,j+1,(cf(tmpp)+fx0y0-fdx.element(i)-fdx.element(j)) / (step.element(i)*step.element(j)));
hessm->Set(j+1,i+1,hessm->Peek(i+1,j+1));
tmpp.element(i) -= step.element(i);
tmpp.element(j) -= step.element(j);
}
}
}
return(hessm);
}
// Display (for debug purposes) matrix if it is small enough for that to make sense
void VarmetMatrix::print() const
{
if (sz > 10) {
cout << "Matrix too big to be meaningful to display" << endl;
return;
}
else {
if (mtp == VM_FULL) {
cout << setw(10) << setprecision(5) << mat;
}
else if (mtp == VM_COL) {
Matrix tmp = IdentityMatrix(sz);
for (unsigned int i=0; i<sf.size(); i++) {
tmp += sf[i] * vec[i]*(vec[i]).t();
}
cout << setw(10) << setprecision(5) << tmp;
}
}
return;
}
// Update estimate of inverse Hessian based on latest step
void VarmetMatrix::update(const NEWMAT::ColumnVector& pdiff, // x_{i+1} - x_i
const NEWMAT::ColumnVector& gdiff) // \nabla f_{i+1} - \nabla f_i
{
// Sort out if this call defines size of problem
if (pdiff.Nrows() != sz || gdiff.Nrows() != sz) {
if (sf.size() == 0 && pdiff.Nrows()==gdiff.Nrows()) {
sz = pdiff.Nrows();
if (mtp == VM_OPT) {
if (sz < 100) {mtp = VM_FULL;}
else {mtp = VM_COL;}
}
}
else {throw NonlinException("VarmetMatrix::update: mismatch between vector and matrix sizes");}
}
// Now do the actual update
double sf1 = DotProduct(pdiff,gdiff);
if ((sf1*sf1) > MISCMATHS::EPS*DotProduct(pdiff,pdiff)*DotProduct(gdiff,gdiff)) {
sf1 = 1.0 / sf1;
ColumnVector v2 = (*this) * gdiff;
double sf2 = -1.0 / DotProduct(gdiff,v2);
if (mtp == VM_FULL) {
mat += sf1 * pdiff * pdiff.t();
mat += sf2 * v2 * v2.t();
}
else {
vec.push_back(pdiff);
vec.push_back(v2);
sf.push_back(sf1);
sf.push_back(sf2);
}
if (utp == VM_BFGS) {
if (mtp == VM_FULL) {
ColumnVector u = sf1*pdiff + sf2*v2;
mat -= (1.0/sf2) * u * u.t();
}
else {
vec.push_back(sf1*pdiff + sf2*v2);
sf.push_back(-1.0/sf2);
}
}
}
}
// Multiply representation of matrix with vector
ColumnVector operator*(const VarmetMatrix& m, const ColumnVector& v)
{
if (m.mtp == VM_FULL) {return(m.mat*v);}
else {
ColumnVector ov = v; // Multiplication with unity matrix
if (m.sf.size() != 0) {
std::vector<double>::const_iterator sfp;
std::vector<NEWMAT::ColumnVector>::const_iterator vep;
for (sfp=m.sf.begin(), vep=m.vec.begin(); sfp!=m.sf.end(); ++sfp, ++vep) {
double tmp = (*sfp) * DotProduct((*vep),v);
ov += tmp * (*vep);
}
}
return(ov);
}
}
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Gateway function to routines for non-linear optimisation
NonlinOut nonlin(const NonlinParam& p, const NonlinCF& cfo)
{
NonlinOut status = NL_MAXITER;
// Call functions that actually do the job
switch (p.Method()) {
case NL_VM:
status = varmet(p,cfo);
break;
case NL_CG:
status = congra(p,cfo);
break;
case NL_SCG:
status = sccngr(p,cfo);
break;
case NL_LM:
status = levmar(p,cfo);
break;
}
return(status);
}
// Main routine for Levenberg-Marquardt optimisation

Jesper Andersson
committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo)
{
// Calculate initial values
p.SetCF(cfo.cf(p.Par())); // Cost-function evaluated at current parameters
bool success = true; // True if last step decreased CF
double olambda = 0.0; // How much the diagonal of H was nudged last time
ColumnVector g; // Gradient
boost::shared_ptr<BFMatrix> H; // Hessian
while (p.NextIter(success)) {
if (success) { // If last attempt decreased cost-function
g = cfo.grad(p.Par()); // Gradient evaluated at current parameters
H = cfo.hess(p.Par(),H); // Hessian evaluated at current parameters
}
for (int i=1; i<=p.NPar(); i++) { // Nudge it
if (p.GaussNewtonType() == LM_LM) { // If Levenberg-Marquardt
H->AddTo(i,i,(p.Lambda()-olambda)*H->Peek(i,i));
}
else if (p.GaussNewtonType() == LM_L) { // If Levenberg
H->AddTo(i,i,p.Lambda()-olambda);
}
}
ColumnVector step = -H->SolveForx(g,SYM_POSDEF,p.EquationSolverTol(),p.EquationSolverMaxIter());
double ncf = cfo.cf(p.Par()+step);
if (success = (ncf < p.CF())) { // If last step successful
olambda = 0.0; // Pristine Hessian, so no need to undo old lambda
p.SetPar(p.Par()+step); // Set attempt as new parameters
p.SetLambda(p.Lambda()/10.0); // Decrease nudge factor
// Check for convergence based on small decrease of cf
if (zero_cf_diff_conv(p.CF(),ncf,p.FractionalCFTolerance())) {
p.SetCF(ncf); p.SetStatus(NL_CFCONV); return(p.Status());
}
p.SetCF(ncf); // Store value of cost-function
}
else { // If last step was unsuccesful
olambda = p.Lambda(); // Returning to same H, so must undo old lambda
p.SetLambda(10.0*p.Lambda()); // Increase nudge factor
p.SetCF(p.CF()); // Push another copy of best cost function value thus far
// Check for convergence based on _really_ large lambda
if (p.Lambda() > p.LambdaConvergenceCriterion()) {
p.SetStatus(NL_LCONV); return(p.Status());
}
}
}
// Getting here means we did too many iterations
p.SetStatus(NL_MAXITER);
return(p.Status());
}
/*
// Main routine for Levenberg-Marquardt optimisation
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo)
{
// Calculate initial values
p.SetCF(cfo.cf(p.Par())); // Cost-function evaluated at current parameters
ColumnVector g = cfo.grad(p.Par()); // Gradient evaluated at current parameters
boost::shared_ptr<BFMatrix> H = cfo.hess(p.Par()); // Hessian evaluated at current parameters
double olambda = 0.0;
bool success = true; // True if last step decreased CF
while (p.NextIter(success)) {
for (int i=1; i<=p.NPar(); i++) { // Nudge diagonal of H
if (p.GaussNewtonType() == LM_LM) {
H->AddTo(i,i,(p.Lambda()-olambda)*H->Peek(i,i));
}
else if (p.GaussNewtonType() == LM_L) {
H->AddTo(i,i,p.Lambda()-olambda);
}
}
ColumnVector step = -H->SolveForx(g,SYM_POSDEF,p.EquationSolverTol(),p.EquationSolverMaxIter());
double ncf = cfo.cf(p.Par()+step);
if (success = (ncf < p.CF())) { // If last step successful
olambda = 0.0; // New H, so no need to undo old lambda
p.SetLambda(p.Lambda()/10.0);
p.SetPar(p.Par()+step);
// Check for convergence based on small decrease of cf
if (zero_cf_diff_conv(p.CF(),ncf,p.FractionalCFTolerance())) {
p.SetCF(ncf); p.SetStatus(NL_CFCONV); return(p.Status());
}
p.SetCF(ncf);
g = cfo.grad(p.Par());
H = cfo.hess(p.Par(),H);
}
else { // If last step was unsuccesful
olambda = p.Lambda(); // Returning to same H, so must undo old lambda
p.SetLambda(10.0*p.Lambda());
p.SetCF(p.CF()); // Push another copy
// Check for convergence based on _really_ large lambda
if (p.Lambda() > p.LambdaConvergenceCriterion()) {
p.SetStatus(NL_LCONV); return(p.Status());
}
}
}
// This means we did too many iterations
p.SetStatus(NL_MAXITER);
return(p.Status());
}

Jesper Andersson
committed
*/
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// Main routine for conjugate-gradient optimisation. The
// implementation follows that of Numerical Recipies
// reasonably closely.
NonlinOut congra(const NonlinParam& np, const NonlinCF& cfo)
{
// Set up initial values
np.SetCF(cfo.cf(np.Par()));
ColumnVector r = -cfo.grad(np.Par());
ColumnVector p = r;
while (np.NextIter()) {
// Check for convergence based on zero gradient
if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) {
np.SetStatus(NL_GRADCONV); return(np.Status());
}
// Bracket minimum along p
pair<double,double> lp, mp; // Leftmost and middle point of bracket
pair<double,double> rp = bracket(np.Par(),p,cfo,np.FractionalParameterTolerance(),1.0,&lp,&mp); // Rightmost point of bracket
if (rp == lp) { // If no smaller point along p
np.SetStatus(NL_PARCONV); return(np.Status()); // Assume it is because we are at minimum
}
// Find minimum along p between lp and rp
pair<double,double> minp; // Minimum along p
LinOut lm_status = linmin(np.Par(),p,cfo,1.0,lp,mp,rp,
np.LineSearchFractionalParameterTolerance(),
np.LineSearchMaxIterations(),&minp);
// Check for problems with line-search
if (lm_status == LM_MAXITER) {np.SetStatus(NL_LM_MAXITER); return(np.Status());} // Ouch!
// Set new cf value and parameters
np.SetPar(np.Par() + minp.first*p);
np.SetCF(minp.second);
// Check for convergence based on small decrease of cost-function
if (zero_cf_diff_conv(np.CF(),minp.second,np.FractionalCFTolerance())) {np.SetStatus(NL_CFCONV); return(np.Status());}
// Check for convergence based on neglible move in parameter space
else if (zero_par_step_conv(minp.first*p,np.Par(),np.FractionalParameterTolerance())) {np.SetStatus(NL_PARCONV); return(np.Status());}
else { // If no covergence
if (((np.NIter())%np.NPar()) == 0) { // Explicitly reset directions after npar iterations
r = -cfo.grad(np.Par());
p = r;
}
else {
ColumnVector oldr = r;
r = -cfo.grad(np.Par());
if (np.ConjugateGradientUpdate() == CG_FR) { // Get conjugate direction Fletcher-Reeves flavour
p = r + (DotProduct(r,r)/DotProduct(oldr,oldr)) * p;
}
else if (np.ConjugateGradientUpdate() == CG_PR) { // Get conjugate direction Polak-Ribiere flavour
p = r + (DotProduct(r-oldr,r)/DotProduct(oldr,oldr)) * p;
}
}
}
}
// If we get here we have used too many iterations
np.SetStatus(NL_MAXITER);
return(np.Status());
}
// Main routine for scaled conjugate-gradient optimisation. The
// idea of the algorithm is similar to that of Levenberg-
// Marquardt. In the LM algorithm the search direction is a
// "compromise" between the Newton direction and the gradient
// direction, where the compromise depends on a factor lambda.
// A large lambda means that it is close to the gradient and a
// small lambda that it is close to the Newton direction. The
// value of lambda is updated each iteration depending on the
// success of the last step. In this method the compromise is
// between the "conjugate gradient" direction and the gradient
// direction. The variable names follow the (excellent!) paper
// by Martin Mller (1993) Neural Networks 6:525-533.
// I have tried to follow the notation he uses in his paper, thus
// enabling that to be the "documentation" for the routine below.
NonlinOut sccngr(const NonlinParam& np, const NonlinCF& cfo)
{
// Set up initial values
np.SetCF(cfo.cf(np.Par())); // Current value for cost-function (E in Moller 92).
double sigma = 1.0e-2; // Step-length when estmating H*p from g(w+sigma*p)-g(w)
double lambda_bar = 0.0; // Update for lambda if approximate hessian not positive definite
ColumnVector r = -cfo.grad(np.Par()); // Negative gradient
ColumnVector p = r; // Search direction
bool success = true; // True if previous step was successful
double delta = 0.0; // Used to check pos def of H in loop below
ColumnVector s(np.NPar()); // Used as approximation to H*p in loop below
while (np.NextIter()) {
double p2 = DotProduct(p,p); // p'*p, Temporary variable to save some time
if (success == true) { // If last step led to reduction of cost-function
double sigma_k = sigma/std::sqrt(p2); // Normalised step-length when estimating H*p
// cout << "np.NIter() = " << np.NIter() << ", p2 = " << p2 << ", sigma_k = " << sigma_k << endl;
s = (cfo.grad(np.Par()+sigma_k*p) + r) / sigma_k; // Approximation to H*p
delta = DotProduct(p,s); // Approximation to p'*H*p
}
s += (np.Lambda()-lambda_bar)*p; // Equivalent to adding (l-lb)*I to H
delta += (np.Lambda()-lambda_bar)*p2; // If <0 then H+(l-lb)*I not positive definite
if (delta <= 0) { // If it H is not positive definite
s += (np.Lambda() - 2.0*(delta/p2)) * p; // Make H more diagonal dominant to ensure pos def
lambda_bar = 2.0*(np.Lambda() - delta/p2);
delta = np.Lambda()*p2 - delta;
np.SetLambda(lambda_bar);
}
double mu = DotProduct(p,r);
double alpha = mu/delta; // Step size in direction p
double tmp_cf = cfo.cf(np.Par()+alpha*p); // Value of cost-function at attempted new point
// cout << "np.NIter() " << np.NIter() << ", delta = " << delta << ", mu = " << mu << ", alpha = " << alpha << endl;
/*
char fname[100];
sprintf(fname,"scg_debug_gradient_%02d.txt",np.NIter());
print_newmat(r,fname);
sprintf(fname,"scg_debug_step_%02d.txt",np.NIter());
ColumnVector step(p); step *= alpha;
print_newmat(step,fname);
double Delta = 2.0*delta*(np.CF()-tmp_cf) / (mu*mu); // > 0 means attempted step reduced cost-function
if (Delta >= 0) { // If step reduces cost-function
np.SetCF(tmp_cf); // Update lowest observed value of cost-function
np.SetPar(np.Par() + alpha*p); // Update best set of parameters
lambda_bar = 0.0;
success = true;
if ((np.NIter()%np.NPar()) == 0) { // If npar iterations since last resetting of directions
r = -cfo.grad(np.Par()); // Reset search direction to negative gradient
p = r;
}
else {
ColumnVector oldr = r;
r = -cfo.grad(np.Par());
double beta = (DotProduct(r,r)-DotProduct(oldr,r)) / mu;
// cout << "np.NIter() = " << np.NIter() << ", beta = " << beta << endl;
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
p = r + beta*p; // New search direction
}
if (Delta > 0.75) { // If attempted step was \emph{REALLY} good
np.SetLambda(np.Lambda()/2.0);
}
}
else { // If step doesn't reduce cost-function
lambda_bar = np.Lambda();
success = false;
}
if (Delta < 0.25) { // If step reduced cost-function only "a little" (or not at all)
np.SetLambda(4.0*np.Lambda());
}
if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) { // If gradient is (practically) zero
np.SetStatus(NL_GRADCONV); return(np.Status());
}
}
// If we get here we have exceeded allowed # of iterations
np.SetStatus(NL_MAXITER);
return(np.Status());
}
// Main routine for variable-metric optimisation. This implements
// the variable-metric optimisation with the BFGS or DFP updating
// schemes. The implementation details are mostly quite close to
// those described in Numerical Recipies in C.
NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo)
{
// Get scale factor to ensure a relative scale beteween
// parameters and cost-function such that fast and robust
// convergence is acheieved.
double sf = cfo.sf(); // Suggestion by "user"
ColumnVector grad = sf*cfo.grad(p.Par()); // Gradient of const-function
if (p.VariableMetricAutoScale()) {
sf = scale_factor(p.Par(),-grad,cfo,p.LineSearchMaxIterations(),sf); // Refinement by "me"
if (sf == 0.0) { // No minimum in indicated direction
p.SetStatus(NL_PARCONV); // Assume this means we are already at minimum
return(p.Status());
}
grad = (sf/cfo.sf()) * grad;
}
VarmetMatrix iH(p.NPar(),VM_OPT,p.VariableMetricUpdate()); // Inverse Hessian
p.SetCF(sf*cfo.cf(p.Par())); // Current value of cost-function
ColumnVector pdir = -(iH*grad); // Direction to search in
double lambda = 0.0; // Step-length returned by linsrch
double newcf = 0.0; // New value for cost-function
ColumnVector newpar(p.NPar()); // New point in parameter space
while (p.NextIter()) {
// Do a line-search to find a new point in parameter space
LinOut status = linsrch(pdir,p.Par(),grad,cfo,p.CF(),sf,p.LineSearchMaxIterations(),
p.LineSearchMaxStep(),p.VariableMetricAlpha(),
p.LineSearchFractionalParameterTolerance(),&lambda,&newcf,&newpar);
// Check for convergence/problems based on outcome of linsrch
if (status == LM_MAXITER) {p.SetStatus(NL_LM_MAXITER); return(p.Status());}
else if (status == LM_LAMBDA_NILL) { // This means we might be heading uphill and should restart
if (p.NextRestart()) { // If we have spare restarts
p.SetCF(p.CF()); // Another copy of old value
iH.reset(); // Back to being unity matrix
pdir = -grad;
continue;
}
else {
p.SetStatus(NL_PARCONV); return(p.Status());
}
}
// Test for convergence based on distance between points in parameter space
ColumnVector dpar = newpar - p.Par();
p.SetPar(newpar);
p.SetCF(newcf);
if (zero_par_step_conv(dpar,p.Par(),p.FractionalParameterTolerance())) {p.SetStatus(NL_PARCONV); return(p.Status());}
// Get gradient at new point
ColumnVector newgrad = sf*cfo.grad(p.Par());
// Test for convergence based on "zero" gradient
if (zero_grad_conv(p.Par(),newgrad,p.CF(),p.FractionalGradientTolerance())) {p.SetStatus(NL_GRADCONV); return(p.Status());}
// Update estimate of inverse Hessian
iH.update(dpar,newgrad-grad);
// Update parameters and get new direction to go in
grad = newgrad;
pdir = -(iH*grad); // N.B. no unary - op for iH, parenthesis necessary
}
// If we get here we have exceeded the allowed # of iterations
p.SetStatus(NL_MAXITER);
return(p.Status());
}
LinOut linsrch(// Input
const ColumnVector& dir, // Search direction
const ColumnVector& p0, // Current parameter values
const ColumnVector& grad, // Gradient at p0
const NonlinCF& cfo, // Cost-function object
double f0, // Current cost-function value
double sf, // Scale factor for cost-function
double maxiter, // Max # of iterations
double sm, // Stepmax
double alpha, // Alpha (sorry).
double ptol, // Tolerance in parameter space
// Output
double *lambda, // Resulting step length
double *of, // Value of cost-function on output
ColumnVector *np) // New parameters
{
const double lmin = 0.1;
const double lmax = 0.5;
// First make sure that the step-length suggested
// by pdir isn't completely unreasonable.
double totstep=std::sqrt(DotProduct(dir,dir));
ColumnVector pdir(dir);
if (totstep > sm) {pdir *= sm/totstep;}
// Calculate expected rate of change in the direction
// given by pdir.
double fp0 = DotProduct(grad,pdir);
// Calculate smallest meaningful lambda given what is
// smallest meaningful change in parameter value.
double almin=0.0;
for (int i=0; i<p0.Nrows(); i++) {

Jesper Andersson
committed
almin = std::max(almin,std::abs(pdir.element(i))/std::max(std::abs(p0.element(i)),1.0));
}
almin = ptol / almin;
// First try a step of full lambda
*lambda = 1.0; // Start with that
(*np) = p0 + (*lambda)*pdir; // First new parameters to try
double f2 = sf * cfo.cf(*np); // Cost-function value for par
// See if that does it (fat chance!)
if (f2 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f2; return(LM_CONV);}
// Calculate Quadratic based on f(0), f'(0)
// and f(1) and find minimum of that quadratic.
*lambda = - fp0 / (2.0*(f2-f0-fp0)); // Minumum of f(lambda)
// Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l

Jesper Andersson
committed
*lambda = std::max(lmin,*lambda);
*lambda = std::min(lmax,*lambda);
(*np) = p0 + (*lambda)*pdir; // Second set of new parameters to try
double f1 = sf * cfo.cf(*np); // Cost-function value for par
// Now we will start fitting cubics to f(0), f'(0),
// f(lambda_1) and f(lambda_2) where lambda_1 is the
// lambda most recently tested and where lambda_2 is
// the lambda tested second to last.
double l2 = 1.0; // Second to last lambda
double l1 = *lambda; // Last lambda
Matrix X(2,2);
ColumnVector y(2);
for (int iter=0; iter<maxiter; iter++) {
// See if present lambda might be too small
if (*lambda < almin) {*of = f1; return(LM_LAMBDA_NILL);}
// See if present value is acceptable
if (f1 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f1; return(LM_CONV);}
// Find parameter values for cubic and square on lambda

Jesper Andersson
committed
X << std::pow(l1,3.0) << std::pow(l1,2.0) << std::pow(l2,3.0) << std::pow(l2,2.0);
y << f1-fp0*l1-f0 << f2-fp0*l2-f0;
ColumnVector b = X.i()*y;
// Find value for lambda that yield minimum of cubic
*lambda = (-b.element(1) + std::sqrt(std::pow(b.element(1),2.0) - 3.0*b.element(0)*fp0)) / (3.0*b.element(0));
// Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l

Jesper Andersson
committed
*lambda = std::max(lmin*l1,*lambda);
*lambda = std::min(lmax*l1,*lambda);
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
// Get new function value and update parameters
f2 = f1;
(*np) = p0 + (*lambda)*pdir;
f1 = sf * cfo.cf(*np);
l2 = l1;
l1 = *lambda;
}
// If we are here we have exceeded # of iterations
*of = f1;
return(LM_MAXITER);
}
// Will try and find a scale factor for the cost-function such that
// the step length (lambda) for the first iteration of the variable-
// metric method is ~0.25. Empricially I have found that such a scaling
// that yields a first step length in the range 0.1 -- 0.5 will yield
// robust and fast convergence. N.B. though that I have only tested that
// for non-linear reg, and it is concievable that it is different for
// other applications with fewer parameters.
double scale_factor(const ColumnVector& p, // Current parameter values
const ColumnVector& pdir, // Search direction
const NonlinCF& cfo, // Cost-function object
int maxiter, // Max # of iterations
double sf) // Scale factor.
{
const double dl = 0.25; // Desired Lambda
const double ftol = 0.01; // Fractional tolerance for minimum
// Start out by finding an upper bound for lambda such that
// a minimum is guaranteed to be between 0 and rp
pair<double,double> lp;
pair<double,double> mp;
pair<double,double> rp = bracket(p,pdir,cfo,ftol,sf,&lp,&mp);
if (rp == mp) { // If there is no minimum in the indicated direction
return(0.0);
}
// Now find a minimum with a fractional accuracy of ~1%
pair<double,double> minpoint;
if (linmin(p,pdir,cfo,sf,lp,mp,rp,ftol,maxiter,&minpoint) == LM_MAXITER) {
throw NonlinException("Failed to find minimum along search direction");
}
sf *= minpoint.first/dl;
return(sf);
}
// Will find the minimum of the cost-function as a function of
// lambda. This routine will find the minimum to a fractional
// tolerance of lambda. This is NOT practical to use for the
// Variable Metric minimisation (too slow), but is used for
// the conjugate-gradient method and for finding the initial
// scaling between parameters and cost-function for the
// variable metric method.
LinOut linmin(// Input
const ColumnVector& p, // Current parameter values
const ColumnVector& pdir, // Search direction
const NonlinCF& cfo, // Cost-function object
double sf, // Scale factor for cost-function
pair<double,double> lp, // Left point
pair<double,double> mp, // Point somewhere in interval
pair<double,double> rp, // Right point
double ftol, // Fractional tolerance
int maxiter,// Max # of iterations
// Output
pair<double,double> *x) // Best point
{
const double gold = 0.382;// Golden section
pair<double,double> test; // New point to test
pair<double,double> w = mp; // Second best point
pair<double,double> v = mp; // Last value of second best point
double step = 0.0;
double ostep = 0.0; // Length of 2nd to last step taken
double d = 0.0; // Length of last step taken
ColumnVector y(3); // Used for fitting parabolic
Matrix X(3,3); // Used for fitting parabolic
*x = mp; // Initialise "best" point
for (int i=0; i<maxiter; i++) {
double midp = (rp.first+lp.first)/2.0; // Midpoint of bracketing points

Jesper Andersson
committed
double tol = 2.0*ftol*std::abs(x->first)+MISCMATHS::EPS; // Std::Absolute tolerance
if (std::abs(x->first-midp) <= (tol-0.5*(rp.first-lp.first))) { // Convergence check
return(LM_CONV);
}
// Try parabolic fit, but not before third iteration
double tmp = 10.0*std::sqrt(MISCMATHS::EPS);

Jesper Andersson
committed
if (std::abs(ostep) > tol/2.0 && // If second to last step big enough
std::abs(x->first-w.first) > tmp &&
std::abs(x->first-v.first) > tmp &&
std::abs(w.first-v.first) > tmp) { // And points not degenerate
step = ostep;
ostep = d;
y << x->second << w.second << v.second;

Jesper Andersson
committed
X << std::pow(x->first,2.0) << x->first << 1.0 <<
std::pow(w.first,2.0) << w.first << 1.0 <<
std::pow(v.first,2.0) << v.first << 1.0;
ColumnVector b = X.i() * y;
if (b.element(0) < 4*MISCMATHS::EPS || // If on line or going for maximum
(test.first = -b.element(1)/(2.0*b.element(0))) <= lp.first
|| test.first >= rp.first || // If outside bracketed interval

Jesper Andersson
committed
std::abs(test.first-x->first) > 0.5*step) { // Or if step too big (indicates oscillation)
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
// Take golden step into larger interval
if (rp.first-x->first > x->first-lp.first) { // If right interval larger
test.first = x->first + gold * (rp.first - x->first);
}
else {
test.first = x->first - gold * (x->first - lp.first);
}
}
}
else { // Take golden step into larger interval
if (x->first < midp) { // If right interval larger
ostep = rp.first - x->first;
test.first = x->first + gold * (rp.first - x->first);
}
else {
ostep = x->first - lp.first;
test.first = x->first - gold * (x->first - lp.first);
}
}
d = test.first - x->first; // Signed length of step
test.second = sf*cfo.cf(p+test.first*pdir); // Evaluate cf at new point
// Now we have a new point, and we need to figure out what to do with it
if (test.second <= x->second) { // If it beats the best step
if (test.first > x->first) {lp = *x;}
else {rp = *x;}
v = w; w = *x; *x = test;
}
else {
if (test.first < x->first) {lp = test;}
else {rp = test;}
if (test.second <= w.second || w.first == x->first) {
v = w; w = test;
}
else if (test.second <= v.second || v.first == x->first || v.first == w.first) {
v = test;
}
}
}
// If we are here we have used too many iterations
return(LM_MAXITER); // Error status
}
// Will return a value lambda such that a function minimum is guaranteed to
// lie somewhere in the interval between p and p+lambda*pdir. The second value
// of the returned pair is the cost-function value at the point.
pair<double,double> bracket(// Input
const ColumnVector& p, // Current parameter values
const ColumnVector& pdir, // Search direction
const NonlinCF& cfo, // Cost-function object
double ptol, // Relative tolerance for parameter values
double sf, // Scale factor of cost-function
// Output
pair<double,double> *p_0, // Cost-function value at p
pair<double,double> *p_m) // Point between p_0 and p_l
{
pair<double,double> p_l;
const double gr = 0.618034;
const double maxstep = 100.0;
p_0->first = 0.0;
double cf0 = sf*cfo.cf(p);
double l1 = 1.0;
double cf1 = sf*cfo.cf(p+l1*pdir);
// Find maximum relative component of search direction
double test = 0.0;

Jesper Andersson
committed
for (int i=0; i<pdir.Nrows(); i++) {test = std::max(test,std::abs(pdir.element(i))/std::max(p.element(i),1.0));}
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
// Do a crude initial search for order of magnitude
while (!isfinite(cf1)) {
l1 *= 0.1;
cf1 = sf*cfo.cf(p+l1*pdir);
}
// Get third point to get us started
double l2 = 0.0;
double cf2 = 0.0;
if (cf1 < cf0) {l2 = (2.0 + gr)*l1; cf2 = sf*cfo.cf(p+l2*pdir);}
else {l2 = l1; cf2 = cf1; l1 = gr * l2; cf1 = sf*cfo.cf(p+l1*pdir);}
// Check if we already have a bracket
if (cf1 < cf0 && cf1 < cf2) {
p_l.first = l2; p_l.second = cf2;
p_m->first = l1; p_m->second = cf1;
p_0->second = cf0;
return(p_l);
}
Matrix X(2,2);
ColumnVector y(2);
double lt = 0.0;
double cft = 0.0;
while (!(cf1 < cf0 && cf1 < cf2)) { // If minimum still not bracketed
if (l2*test < ptol) { // If interval ridicously small
p_l = *p_0;
*p_m = *p_0;
return(p_l);
}
// Let's see if a parabolic might help us
if (std::abs(l2-l1) > 10.0*std::sqrt(MISCMATHS::EPS)) {

Jesper Andersson
committed
X << std::pow(l1,2.0) << l1 << std::pow(l2,2.0) << l2;
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
y << cf1 << cf2;
ColumnVector b = X.i()*y;
if (b.element(0) > 4.0*MISCMATHS::EPS) { // Check they are not on a line and not for maximum
lt = - (b.element(1) / (2.0 * b.element(0))); // Tentative point
if (lt > 0 && lt < l2) { // If in range of previous points
cft = sf*cfo.cf(p+lt*pdir);
if (cft < cf0 && cft < cf2) {l1=lt; cf1=cft; continue;}
else if (cft > cf0 && lt < l1 && cft < cf1) {l2=l1; cf2=cf1; l1=lt; cf1=cft; continue;}
else if (cft > cf0 && lt > l1 && cft < cf2) {l2=lt; cf2=cft; continue;}
}
else if (lt > 0 && lt < maxstep*l2) { // If expansion in allowed range
cft = sf*cfo.cf(p+lt*pdir);
l1 = l2; cf1 = cf2;
l2 = lt; cf2 = cft;
continue;
}
}
}
// If we are here the parabolic was of no use
if (cf2 < cf0) { // We need to expand
lt = (2.0 + gr)*l2;
cft = sf*cfo.cf(p+lt*pdir);
l1 = l2; cf1 = cf2;
l2 = lt; cf2 = cft;
}
else { // We need to contract
lt = gr * l1;
cft = sf*cfo.cf(p+lt*pdir);
l2 = l1; cf2 = cf1;
l1 = lt; cf1 = cft;
}
}
// If we are here we know that there is a minimum
// somewhere between 0 and l2;
p_0->second = cf0;
p_m->first = l1;
p_m->second = cf1;
p_l.first = l2;
p_l.second = cf2;
return(p_l);
}
// Utility routines that checks for convergence based on various criteria
// Based on zero (neglible) gradient
bool zero_grad_conv(const ColumnVector& par,
const ColumnVector& grad,
double cf,
double gtol)
{
double test = 0.0; // test will be largest relative component of gradient
for (int i=0; i<par.Nrows(); i++) {

Jesper Andersson
committed
test = std::max(test,std::abs(grad.element(i))*std::max(std::abs(par.element(i)),1.0));

Jesper Andersson
committed
test /= std::max(cf,1.0); // Protect against near-zero values for cost-function
return(test < gtol);
}
// Based on zero (neglible) decrease in cost-function
bool zero_cf_diff_conv(double cfo,
double cfn,
double cftol)
{

Jesper Andersson
committed
return(2.0*std::abs(cfo-cfn) <= cftol*(std::abs(cfo)+std::abs(cfn)+MISCMATHS::EPS));
}
// Based on zero (neglible) step in parameter space
bool zero_par_step_conv(const ColumnVector& par,
const ColumnVector& step,
double ptol)
{
double test = 0.0;
for (int i=0; i<par.Nrows(); i++) {

Jesper Andersson
committed
test = std::max(test,std::abs(step.element(i))/std::max(std::abs(par.element(i)),1.0));
}
return(test < ptol);
}
// Utility routines that allow the user to check accuracy of their own grad and hess functions