Skip to content
Snippets Groups Projects
SpMat.h 39.9 KiB
Newer Older
//  
//  Declarations/template-bodies for sparse matrix class SpMat
//
//  SpMat.h
//
//  Implements bare-bones sparse matrix class. 
//  Main considerations has been efficiency when constructing
//  from Compressed Column format, when multiplying with vector,
//  transposing and multiplying with a vector and when concatenating.
//  Other operations which have not been prioritised such as 
//  for example inserting elements in a random order may be
//  a bit slow.  
//
//
// Jesper Andersson, FMRIB Image Analysis Group
//
// Copyright (C) 2007 University of Oxford 
//

#ifndef SpMat_h
#define SpMat_h

#include <vector>
#include <fstream>
#include <iomanip>
#include <boost/shared_ptr.hpp>
#include "newmat.h"
#include "cg.h"
#include "bicg.h"

namespace MISCMATHS {

class SpMatException: public std::exception
{
private:
  std::string m_msg;
public:
  SpMatException(const std::string& msg) throw(): m_msg(msg) {}

  virtual const char * what() const throw() {
    return string("SpMat::" + m_msg).c_str();
  }

  ~SpMatException() throw() {}
};

enum MatrixType {UNKNOWN, ASYM, SYM, SYM_POSDEF};

template<class T>
class Preconditioner;

template<class T>
class Accumulator;


//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class SpMat:
// Interface includes:
// Multiplication with scalar:  A*=s, B=s*A, B=A*s, A and B SpMat
// Multiplication with vector:  b=A*x, A SpMat, b and x ColumnVector
// Transpose and mul with vector: b=A.trans_mult(x), A SpMat, b and x ColumnVector
// Multiplication with sparse matrix: C=A*B, A, B and C SpMat
// Addition with sparse matrix: A+=B, C=A+B, A, B and C SpMat
// Horisontal concatenation: A|=B, C=A|B, A, B and C SpMat
// Vertical concatenation: A&=B, C=A&B, A, B and C SpMat
//
// Multiplications and addition with NEWMAT matrices are
// accomplished through type-conversions. For example
// A = B*SpMat(C), A and B SpMat, C NEWMAT
// A = B.AsNewmat()*C, B SpMat, A and C NEWMAT
//
// Important implementation detail:
// _nz or .NZ() isn't strictly speaking the # of non-zero elements,
// but rather the number of elements that has an explicit 
// representation, where that representation may in principle
// be 0. This is in contrast to e.g. Matlab which chooses
// not to represent an element when its value is zero. I have
// chosen this variant because of my main use of the class where 
// it is very convenient if e.g. my Hessian and the Gibbs form
// of membrane energy has the same sparsity pattern.
// For most users this is of no consequence and they will 
// never explicitly represent a zero.
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

template<class T>
class SpMat
{
public:
  SpMat() : _m(0), _n(0), _nz(0), _ri(0), _val(0) {}
  SpMat(unsigned int m, unsigned int n) : _m(m), _n(n), _nz(0), _ri(n), _val(n) {}
  SpMat(unsigned int m, unsigned int n, const unsigned int *irp, const unsigned int *jcp, const double *sp);
  SpMat(const NEWMAT::GeneralMatrix& M);

  unsigned int Nrows() const {return(_m);}
  unsigned int Ncols() const {return(_n);}
  unsigned int NZ() const {return(_nz);}

  NEWMAT::ReturnMatrix AsNEWMAT() const;
  void Save(const std::string&   fname,
            unsigned int         precision) const;
  void Save(const std::string&   fname) const {Save(fname,8);}
  void Print(const std::string&  fname,
             unsigned int        precision) const;
  void Print(const std::string&  fname) const {Print(fname,8);}
  void Print(unsigned int        precision) const {Print(std::string(""),precision);}
  void Print() const {Print(8);}


  T Peek(unsigned int r, unsigned int c) const;
  T operator()(unsigned int r, unsigned int c) const {return(Peek(r,c));}    // Read-only

  void Set(unsigned int r, unsigned int c, const T& v) {here(r,c) = v;}             // Set a single value
  void SetColumn(unsigned int c, const NEWMAT::ColumnVector& col, double eps=0.0);  // Set a whole column (obliterating what was there before) 
  void AddTo(unsigned int r, unsigned int c, const T& v) {here(r,c) += v;}          // Add value to a single (possibly existing) value

  SpMat<T>& operator+=(const SpMat& M) 
  {
    if (same_sparsity(M)) return(add_same_sparsity_mat_to_me(M,1));
    else return(add_diff_sparsity_mat_to_me(M,1));
  }
  SpMat<T>& operator-=(const SpMat& M) 
  {
    if (same_sparsity(M)) return(add_same_sparsity_mat_to_me(M,-1)); 
    else return(add_diff_sparsity_mat_to_me(M,-1));
  }
  const NEWMAT::ReturnMatrix operator*(const NEWMAT::ColumnVector& x) const;       // Multiplication with column vector
  const NEWMAT::ReturnMatrix trans_mult(const NEWMAT::ColumnVector& x) const;      // Multiplication of transpose with column vector
  const NEWMAT::ReturnMatrix TransMult(const NEWMAT::ColumnVector& x) const {
    return(trans_mult(x));                                                         // Duplication for compatibility with IML++
  }
  const SpMat<T> TransMult(const SpMat<T>& B) const;                               // Multiplication of transpose(*this) with sparse matrix B
  SpMat<T>& operator*=(double s);                                                  // Multiplication of self with scalar
  SpMat<T> operator-(const SpMat<T>& M) const {return(SpMat<T>(M) *= -1.0);}       // Unary minus
  SpMat<T>& operator|=(const SpMat<T>& rh);                                        // Hor concat to right
  SpMat<T>& operator&=(const SpMat<T>& bh);                                        // Vert concat below

  const SpMat<T> TransMultSelf() const {return(TransMult(*this));}                 // Returns transpose(*this)*(*this)

  const SpMat<T> t() const;                                                        // Returns transpose(*this). Avoid, if at all possible.
  
  friend class Accumulator<T>; 

  template<class TT>
  friend const SpMat<TT> operator*(const SpMat<TT>& lh, const SpMat<TT>& rh);      // Multiplication of two sparse matrices

  NEWMAT::ReturnMatrix SolveForx(const NEWMAT::ColumnVector&           b,          // Solve for x in b=(*this)*x
                                 MatrixType                            type = UNKNOWN,
                                 double                                tol = 1e-4, 
                                 unsigned int                          miter = 200,
				 boost::shared_ptr<Preconditioner<T> > C = boost::shared_ptr<Preconditioner<T> >()) const;
  NEWMAT::ReturnMatrix SolveForx(const NEWMAT::ColumnVector&            b,
			         MatrixType                             type,
			         double                                 tol,
			         unsigned int                           miter,
				 const NEWMAT::ColumnVector&            x_init) const;
  NEWMAT::ReturnMatrix SolveForx(const NEWMAT::ColumnVector&            b,
			         MatrixType                             type,
			         double                                 tol,
			         unsigned int                           miter,
				 boost::shared_ptr<Preconditioner<T> >  C,
				 const NEWMAT::ColumnVector&            x_init) const;
private:
  unsigned int                              _m;
  unsigned int                              _n;
  unsigned long                             _nz;
  std::vector<std::vector<unsigned int> >   _ri;
  std::vector<std::vector<T> >              _val;

  bool found(const std::vector<unsigned int>&  ri, unsigned int key, int& pos) const;
  T& here(unsigned int r, unsigned int c);
  void insert(std::vector<unsigned int>& vec, int indx, unsigned int val);
  void insert(std::vector<T>& vec, int indx, const T& val);
  bool same_sparsity(const SpMat<T>& M) const;
  SpMat<T>& add_same_sparsity_mat_to_me(const SpMat<T>& M, double s);
  SpMat<T>& add_diff_sparsity_mat_to_me(const SpMat<T>& M, double s);
};

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class Preconditioner:
//
// I haven't used conditioner for close to 20 years now, so writing
// this class was a special treat for me. A preconditioner is used
// to render the coefficient-matrix corresponding to some set of
// linear equations better conditioned. A concrete example would be
// when some set of columns/rows have a different scale than the 
// others, resulting in poor convergence of for example a conjugate
// gradient search. The simplest form of preconditioner might then 
// be inv(diag(A)), where A is the original matrix. It simply scales
// the columns of A with the inverse of the diagonal elements. This
// simple conditioning works fine when A is diagonal domninant, which
// i typically the case with e.g. Hessians in spatial normalisation.
// If not, a more sophisticated version like incomplete Cholesky
// decomposition might be needed.
// As of yet only diagonal preconditioners have been implemented.
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

template<class T>
class Preconditioner
{
public:
  Preconditioner(const SpMat<T>& M) : _m(M.Nrows())
  {
    if (M.Nrows() != M.Ncols()) throw SpMatException("Preconditioner: Matrix to condition must be square");
  }
  virtual ~Preconditioner() {}
  unsigned int Nrows() const {return(_m);}
  virtual NEWMAT::ReturnMatrix solve(const NEWMAT::ColumnVector& x) const = 0;
  virtual NEWMAT::ReturnMatrix trans_solve(const NEWMAT::ColumnVector& x) const = 0;
private:
  unsigned int     _m;
};

template<class T>
class DiagPrecond: public Preconditioner<T>
{
public:
  DiagPrecond(const SpMat<T>& M) : Preconditioner<T>(M), _diag(M.Nrows())
  {
    for (unsigned int i=0; i<Preconditioner<T>::Nrows(); i++) {
      _diag[i] = M(i+1,i+1);
      if (_diag[i] == 0.0) throw SpMatException("DiagPrecond: Cannot condition singular matrix");
    }
  }
  ~DiagPrecond() {}
  NEWMAT::ReturnMatrix solve(const NEWMAT::ColumnVector& x) const
  {
    if (x.Nrows() != int(Preconditioner<T>::Nrows())) throw SpMatException("DiagPrecond::solve: Vector x has incompatible size");

    NEWMAT::ColumnVector  b(Preconditioner<T>::Nrows());
    double                *bptr = static_cast<double *>(b.Store());
    double                *xptr = static_cast<double *>(x.Store());
    for (unsigned int i=0; i<Preconditioner<T>::Nrows(); i++) bptr[i] = xptr[i]/static_cast<double>(_diag[i]);
    b.Release();

    return(b);
  }
  NEWMAT::ReturnMatrix trans_solve(const NEWMAT::ColumnVector& x) const {return(solve(x));}

private:
  std::vector<T>   _diag;
};  
  

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class Accumulator:
//
// The concept of an accumulator was "borrowed" from Gilbert et al. 
// 92. It is intended as a helper class for SpMat and is used to
// hold the content of one column of a matrix. This column can then
// be accessed both by indexing a certain element, and also by indexing
// only non-zero elements.
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

template<class T>
class Accumulator
{
public:
  Accumulator(unsigned int sz) : _no(0), _sz(sz), _sorted(true), _occ(new bool [sz]), _val(new T [sz]), _occi(new unsigned int [sz]) 
  {
    for (unsigned int i=0; i<_sz; i++) {_occ[i]=false; _val[i]=static_cast<T>(0.0);}
  }
  ~Accumulator() {delete [] _occ; delete [] _val; delete [] _occi;}
  void Reset() {for (unsigned int i=0; i<_no; i++) {_occ[_occi[i]]=false; _val[_occi[i]]=static_cast<T>(0.0);} _no=0;}
  T& operator()(unsigned int i);
  unsigned int NO() const {return(_no);}
  unsigned int ri(unsigned int i) {                             // Index of i'th non-zero value.
    if (!_sorted) {sort(_occi,&(_occi[_no])); _sorted=true;}
    return(_occi[i]);
  }
  const T& val(unsigned int i) {                                // i'th non-zero value. Call ri(i) to find what index that corresponds to
    if (!_sorted) {sort(_occi,&(_occi[_no])); _sorted=true;}    
    return(_val[_occi[i]]);
  }
  const T& val_at(unsigned int i) const {return(_val[i]);}      // Value for index i (or i+1)
  const bool& occ_at(unsigned int i) const {return(_occ[i]);}   // Is value for index i non-zero
  
  const Accumulator<T>& ExtractCol(const SpMat<T>& M, unsigned int c);
  
private:
  unsigned int                   _no;       // Number of occupied positions
  unsigned int                   _sz;       // Max size of accumulated vector
  bool                           _sorted;   // True if _occi is ordered
  bool                           *_occ;     // True if position is "occupied"  
  T                              *_val;     // "Value" in position
  unsigned int                   *_occi;    // Unordered list of occupied indicies
};

/////////////////////////////////////////////////////////////////////
//
// Constructs sparse matrix from Compressed Column Storage representation
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>::SpMat(unsigned int m, unsigned int n, const unsigned int *irp, const unsigned int *jcp, const double *sp)
: _m(m), _n(n), _nz(0), _ri(n), _val(n)
{
  _nz = jcp[n];
  unsigned long nz = 0;
  for (unsigned int c=0; c<_n; c++) {
    if (int len = jcp[c+1]-jcp[c]) {
      std::vector<unsigned int>&  ri = _ri[c];
      std::vector<T>&             val = _val[c];
      const unsigned int          *iptr = &(irp[jcp[c]]);
      const double                *vptr = &(sp[jcp[c]]);
      ri.resize(len);
      val.resize(len);
      for (int i=0; i<len; i++) {
        ri[i] = iptr[i];
        val[i] = static_cast<T>(vptr[i]);
        nz++;
      }
    }
  }
  if (nz != _nz) throw SpMatException("SpMat: Compressed column input not self consistent");
}

/////////////////////////////////////////////////////////////////////
//
// Constructs sparse matrix from NEWMAT Matrix or Vector
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>::SpMat(const NEWMAT::GeneralMatrix& M)
: _m(M.Nrows()), _n(M.Ncols()), _nz(0), _ri(M.Ncols()), _val(M.Ncols())
{
  double *m = static_cast<double *>(M.Store());

  for (unsigned int c=0; c<_n; c++) {
    // First find # of non-zeros elements in column
    unsigned int cnz = 0;
    for (unsigned int i=0; i<_m; i++) {
      if (m[i*_n+c]) cnz++;
    }
    if (cnz) {
      std::vector<unsigned int>&   ri = _ri[c];
      std::vector<T>&              val = _val[c];
      ri.resize(cnz);
      val.resize(cnz);
      for (unsigned int rii=0, i=0; i<_m; i++) {
        if (double v = m[i*_n+c]) {
          ri[rii] = i;
          val[rii] = v;
          rii++;
	}
      }
      _nz += cnz;
    }
  }  
}

/////////////////////////////////////////////////////////////////////
//
// Constructs matrix from row col val format produced by 
// Save/Print below.
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>::SpMat(const std::string&  fname)
: _m(0), _n(0), _nz(0), _ri(0), _val(0)
{
  // First read data into (nz+1)x3 NEWMAT matrix
  NEWMAT::Matrix rcv;
  try {
    rcv = read_ascii_matrix(fname);
  }
  catch(...) {
    throw SpMatException("SpMat::SpMat(string& fname): cannot read file given by fname");
  }
  // Then interpret it
  if (rcv(rcv.Nrows(),3)) throw SpMatException("SpMat::SpMat(string& fname): Last row must have zero value and indicate matrix size");
  _m = static_cast<unsigned int>(rcv(rcv.Nrows(),1)+0.5);
  _n = static_cast<unsigned int>(rcv(rcv.Nrows(),2)+0.5);
  // cout << "rcv = " << endl << rcv << endl << "_n = " << _n << endl;
  _ri.resize(_n);
  _val.resize(_n);
  // First pass to see how many elements in each colum
  std::vector<unsigned int> col_count(_n,0);
  unsigned int col = static_cast<unsigned int>(rcv(1,2)+0.5);
  for (unsigned int indx=1; indx<static_cast<unsigned int>(rcv.Nrows()); indx++) {
    if (static_cast<unsigned int>(rcv(indx,2)+0.5) != col) {
      if (static_cast<unsigned int>(rcv(indx,2)+0.5) < col) throw SpMatException("SpMat::SpMat(string& fname): Column index must be monotonously increasing");
      else col = static_cast<unsigned int>(rcv(indx,2)+0.5);
      if (col > _n) throw SpMatException("SpMat::SpMat(string& fname): File internally inconsistent");
    }
    // cout << "col = " << col << endl;
    col_count[col-1]++;
  }
  // Second pass to allocate and fill vectors
  unsigned int indx=1;
  for (col=0; col<_n; col++) {
    std::vector<unsigned int>& ri = _ri[col];
    std::vector<T>&            val = _val[col];
    ri.resize(col_count[col]);
    val.resize(col_count[col]);
    for (unsigned int i=0; i<col_count[col]; i++, indx++) {
      if (i && ri[i] >= static_cast<unsigned int>(rcv(indx,1)+0.5)) throw SpMatException("SpMat::SpMat(string& fname): Row index must be monotonously increasing");
      if (static_cast<unsigned int>(rcv(indx,1)+0.5) < 1 || static_cast<unsigned int>(rcv(indx,1)+0.5) > _m) {
        throw SpMatException("SpMat::SpMat(string& fname): Row index outside 1 -- -m range");
      } 
      ri[i] = static_cast<unsigned int>(rcv(indx,1)+0.5) - 1;
      val[i] = rcv(indx,3);
      _nz++;
    }
  }
}


/////////////////////////////////////////////////////////////////////
//
// Returns matrix in NEWMAT matrix format. Useful for debugging
//
/////////////////////////////////////////////////////////////////////

template<class T>
NEWMAT::ReturnMatrix SpMat<T>::AsNEWMAT() const
{
  NEWMAT::Matrix M(_m,_n);
  M = 0.0;
  for (unsigned int c=0; c<_n; c++) {
    if (_ri[c].size()) {
      const std::vector<unsigned int>&    ri = _ri[c];
      const std::vector<T>&               val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        M(ri[i]+1,c+1) = static_cast<double>(val[i]);
      }
    }
  }
  M.Release();
  return(M);
}

/////////////////////////////////////////////////////////////////////
//
// Saves matrix in a row col val format that is useful for
// exporting it to Matlab (use Matlab function spconvert).
// Is really the same as Print below, but only writes to
// file as opposed to Print that optionally prints to the
// screen.
//
/////////////////////////////////////////////////////////////////////

template<class T>
void SpMat<T>::Save(const std::string&  fname,
                    unsigned int        precision) const
{
  if (!fname.length()) throw SpMatException("SpMat::Save: Must specify filename");
  else Print(fname,precision);
}

/////////////////////////////////////////////////////////////////////
//
// Prints matrix in a row col val format that is useful for
// exporting it to Matlab (use Matlab function spconvert).
//
/////////////////////////////////////////////////////////////////////

template<class T>
void SpMat<T>::Print(const std::string&  fname,
                     unsigned int        precision) const
{
  ostream  *sptr=0;

  if (!fname.length()) {
    sptr = &cout;
  }
  else {
    try {
      sptr = new ofstream(fname.c_str());
    }
    catch(...) {
      std::string  errmsg("BFMatrix::print: Failed to write to file " + fname);
      throw SpMatException(errmsg);
    }
  }
  (*sptr) << setprecision(precision);

  for (unsigned int c=0; c<_n; c++) {
    for (unsigned int i=0; i<_ri[c].size(); i++) {
      if (_val[c][i]) (*sptr) << _ri[c][i]+1 << "  " << c+1 << "  " << _val[c][i] << endl;
    }
  }
  (*sptr) << _m << "  " << _n << "  " << 0 << endl;
  
  if (fname.length()) delete sptr;
}

/////////////////////////////////////////////////////////////////////
//
// Solves for x in expression b=(*this)*x. Uses the IML++ templates
// to obtain an iterative solution. It is presently a little stupid
// when a matrix of UNKNOWN type is passed. It will then assume worst
// case (asymmetric) rather than testing for symmetry and positive
// definiteness. That really should be changed, but at the moment
// I don't have the time.
//
/////////////////////////////////////////////////////////////////////

template<class T>
NEWMAT::ReturnMatrix SpMat<T>::SolveForx(const NEWMAT::ColumnVector&            b,
			                 MatrixType                             type,
			                 double                                 tol,
			                 unsigned int                           miter,
					 const NEWMAT::ColumnVector&            x_init) const
{
  return this->SolveForx(b,type,tol,miter,boost::shared_ptr<Preconditioner<T> >(),x_init);
}

template<class T>
NEWMAT::ReturnMatrix SpMat<T>::SolveForx(const NEWMAT::ColumnVector&            b,
			                 MatrixType                             type,
			                 double                                 tol,
			                 unsigned int                           miter,
					 boost::shared_ptr<Preconditioner<T> >  C) const
{
  NEWMAT::ColumnVector x_init;
  return this->SolveForx(b,type,tol,miter,C,x_init);
}

template<class T>
NEWMAT::ReturnMatrix SpMat<T>::SolveForx(const NEWMAT::ColumnVector&            b,
			                 MatrixType                             type,
			                 double                                 tol,
			                 unsigned int                           miter,
					 boost::shared_ptr<Preconditioner<T> >  C,
					 const NEWMAT::ColumnVector&           x_init) const
{
  if (_m != _n) throw SpMatException("SolveForx: Matrix must be square");
  if (int(_m) != b.Nrows()) throw SpMatException("SolveForx: Mismatch between matrix and vector");

  NEWMAT::ColumnVector  x(_n);
  if (x.Nrows() == x_init.Nrows()) {
    x = x_init;
  } else {
    if (x_init.Nrows()>0) {
      throw SpMatException("SolveForx: initialisation vector has incorrect size");
    } else {
      x = 0.0;
    }
  }
  int                   status = 0;
  int                   liter = int(miter);
  double                ltol = tol;
  // Use diagonal conditioner if no user-specified one
  boost::shared_ptr<Preconditioner<T> > M = boost::shared_ptr<Preconditioner<T> >();
  if (!C) M = boost::shared_ptr<Preconditioner<T> >(new DiagPrecond<T>(*this));
  else M = C;

  switch (type) {
  case SYM_POSDEF:
    status = CG(*this,x,b,*M,liter,tol);
    break;
  case SYM:
  case ASYM:
  case UNKNOWN:
    status = BiCG(*this,x,b,*M,liter,tol);
    break;
  default:
    throw SpMatException("SolveForx: No idea how you got here. But you shouldn't be here, punk.");
  }

  if (status) {
    cout << "SpMat::SolveForx: Warning requested tolerence not obtained." << endl;
    cout << "Requested tolerance was " << ltol << ", and achieved tolerance was " << tol << endl;
    cout << "This may or may not be a problem in your application, but you should look into it" << endl;
  }
  
  x.Release();
  return(x);
}

/////////////////////////////////////////////////////////////////////
//
// Returns a sparse matrix that is the transpose of *this
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> SpMat<T>::t() const
{
  SpMat<T>         t_mat(_n,_m);
  Accumulator<T>   t_col(_n);
  for (unsigned int new_col=0; new_col<_m; new_col++) {    // For all columns of transposed matrix
    t_col.Reset();
    for (unsigned int old_col=0; old_col<_n; old_col++) {  // Search old colums for row-index corresponding to new_col
      int pos = 0;
      if (found(_ri[old_col],new_col,pos)) {
	t_col(old_col) = _val[old_col][pos];
      }
    }
    t_mat._ri[new_col].resize(t_col.NO());  
    t_mat._val[new_col].resize(t_col.NO());
    std::vector<unsigned int>&   t_mat_ri = t_mat._ri[new_col];
    std::vector<T>&              t_mat_val = t_mat._val[new_col];
    for (unsigned int i=0; i<t_col.NO(); i++) {
      t_mat_ri[i] = t_col.ri(i);
      t_mat_val[i] = t_col.val(i);
    }
    t_mat._nz += t_col.NO();
  }
  return(t_mat);  
}

/////////////////////////////////////////////////////////////////////
//
// Sets the values of an entire column, destroying any previous content.
//
/////////////////////////////////////////////////////////////////////

template<class T>
void SpMat<T>::SetColumn(unsigned int                 c,      // Column #
			 const NEWMAT::ColumnVector&  col,    // The values in that column
			 double                       eps)    // Any value <= eps is treated as a zero
{
  if (c < 1 || c > _n) throw SpMatException("SetColumn: column index out of range");
  if (static_cast<unsigned int>(col.Nrows()) != _m) throw SpMatException("SetColumn: column size mismatch");

  Accumulator<T>    acc(_m);
  double            *colp = col.Store();
  
  for (unsigned int i=0; i<_m; i++) {
    if (colp[i] > eps) acc(i) = static_cast<T>(colp[i]);
  }
  
  std::vector<unsigned int>&   ri = _ri[c-1];
  std::vector<T>&              val = _val[c-1];
  unsigned int                 old_sz = ri.size();
  if (old_sz) {
    ri = std::vector<unsigned int>(acc.NO());
    val = std::vector<T>(acc.NO());
  }
  else {
    ri.resize(acc.NO()); 
    val.resize(acc.NO());
  }
  for (unsigned int i=0; i<acc.NO(); i++) {
    ri[i] = acc.ri(i);
    val[i] = acc.val(i);
  }
  _nz += (acc.NO() - old_sz);
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/////////////////////////////////////////////////////////////////////
//
// Returns value at position i,j (one offset)
//
/////////////////////////////////////////////////////////////////////

template<class T>
T SpMat<T>::Peek(unsigned int r, unsigned int c) const
{
  if (r<1 || r>_m || c<1 || c>_n) throw SpMatException("Peek: index out of range");

  int i=0;
  if (found(_ri[c-1],r-1,i)) return(_val[c-1][i]);

  return(static_cast<T>(0.0));
}

/////////////////////////////////////////////////////////////////////
//
// Multiply with vector x returning vector b (b = A*x)
//
/////////////////////////////////////////////////////////////////////

template<class T>
const NEWMAT::ReturnMatrix SpMat<T>::operator*(const NEWMAT::ColumnVector& x) const
{
  if (_n != static_cast<unsigned int>(x.Nrows())) throw SpMatException("operator*: # of rows in vector must match # of columns in matrix");
  NEWMAT::ColumnVector b(_m);
  b = 0.0;
  const double *xp = static_cast<double *>(x.Store());
  double       *bp = static_cast<double *>(b.Store());

  for (unsigned int c=0; c<_n; c++) {
    if (_ri[c].size()) {
      double                            wgt = xp[c];
      const std::vector<unsigned int>&  ri = _ri[c];
      const std::vector<T>&             val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        bp[ri[i]] += static_cast<double>(wgt*val[i]);
      }
    }
  }
  b.Release();
  return(b);
}  

/////////////////////////////////////////////////////////////////////
//
// Multiply transpose with sparse matrix B returning matrix C (C = A'*B)
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> SpMat<T>::TransMult(const SpMat<T>& B) const
{
  if (_m != B._m) throw SpMatException("TransMult(SpMat& ): Left hand matrix must have same # of rows as right hand");
  
  SpMat<T>        C(_n,B._n);
  Accumulator<T>  outacc(_n);
  Accumulator<T>  Bcol(B._m);

  for (unsigned int Bc=0; Bc<B._n; Bc++) {
    outacc.Reset();
    Bcol.Reset();
    Bcol.ExtractCol(B,Bc);
    for (unsigned int Ac=0; Ac<_n; Ac++) {
      const std::vector<unsigned int>&   ri = _ri[Ac];
      const std::vector<T>&              val = _val[Ac];
      T tmp = static_cast<T>(0);
      for (unsigned int i=0; i<ri.size(); i++) {
        if (Bcol.occ_at(ri[i])) {
          tmp += val[i] * Bcol.val_at(ri[i]);
	}
      }
      if (tmp) outacc(Ac) += tmp;
    }
    C._ri[Bc].resize(outacc.NO());
    C._val[Bc].resize(outacc.NO());
    std::vector<unsigned int>&   Cri = C._ri[Bc];
    std::vector<T>&              Cval = C._val[Bc];
    for (unsigned int i=0; i<outacc.NO(); i++) {
      Cri[i] = outacc.ri(i);
      Cval[i] = outacc.val(i);
    }
    C._nz += outacc.NO();
  }
 
  return(C);
}

/////////////////////////////////////////////////////////////////////
//
// Multiply transpose with vector x returning vector b (b = A'*x)
//
/////////////////////////////////////////////////////////////////////

template<class T>
const NEWMAT::ReturnMatrix SpMat<T>::trans_mult(const NEWMAT::ColumnVector& x) const
{
  if (_m != static_cast<unsigned int>(x.Nrows())) throw SpMatException("trans_mult: # of rows in vector must match # of columns in transpose of matrix");
  NEWMAT::ColumnVector b(_n);
  const double *xp = static_cast<double *>(x.Store());
  double       *bp = static_cast<double *>(b.Store());

  for (unsigned int c=0; c<_n; c++) {
    double                            res = 0.0;
    if (_ri[c].size()) {
      const std::vector<unsigned int>&  ri = _ri[c];
      const std::vector<T>&             val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        res += val[i]*xp[ri[i]];
      }
    }
    bp[c] = res;
  }
  b.Release();
  return(b);
}  

/////////////////////////////////////////////////////////////////////
//
// Multiplication of self with scalar
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::operator*=(double s)
{
  for (unsigned int c=0; c<_n; c++) {
    if (_val[c].size()) {
      std::vector<T>&             val = _val[c];
      for (unsigned int i=0; i<val.size(); i++) val[i] *= s;
    }
  }
  return(*this);  
}
      
/////////////////////////////////////////////////////////////////////
//
// Concatenates rh to right of *this
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::operator|=(const SpMat<T>& rh)
{
  if (_m != rh._m) throw SpMatException("operator|=: Matrices must have same # of rows");
  
  _ri.resize(_n+rh._n);
  _val.resize(_n+rh._n);
  for (unsigned int c=0; c<rh._n; c++) {
    _ri[_n+c] = rh._ri[c];
    _val[_n+c] = rh._val[c];
  }
  _n += rh._n;
  _nz += rh._nz;
  
  return(*this);    
}

/////////////////////////////////////////////////////////////////////
//
// Concatenates bh below *this
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::operator&=(const SpMat<T>& bh)
{
  if (_n != bh._n) throw SpMatException("operator&=: Matrices must have same # of columns");

  for (unsigned int c=0; c<_n; c++) {
    if ((bh._ri[c]).size()) {
      std::vector<unsigned int>&        ri = _ri[c];
      const std::vector<unsigned int>&  bhri = bh._ri[c];
      std::vector<T>&                   val = _val[c];
      const std::vector<T>&             bhval = bh._val[c];
      unsigned int                      os = ri.size();
      unsigned int                      len = bhri.size();
      ri.resize(os+len);
      val.resize(os+len);
      for (unsigned int i=0; i<len; i++) {
        ri[os+i] = _m + bhri[i];
        val[os+i] = bhval[i];
      }
    }
  }
  _m += bh._m;
  _nz += bh._nz;

  return(*this);
}

/*###################################################################
##
## Here starts global functions
##
###################################################################*/

/////////////////////////////////////////////////////////////////////
//
// Global function for multiplication of two SpMat matrices
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator*(const SpMat<T>& lh, const SpMat<T>& rh)
{
  if (lh._n != rh._m) throw SpMatException("operator*: Left hand matrix must have same # of columns as right hand has rows");

  SpMat<T>              out(lh._m,rh._n);
  Accumulator<T>        acc(lh._m);
  
  for (unsigned int cr=0; cr<rh._n; cr++) {
    acc.Reset();
    if (rh._ri[cr].size()) {
      const std::vector<unsigned int>&   rri = rh._ri[cr];
      const std::vector<T>&             rval = rh._val[cr];
      for (unsigned int i=0; i<rri.size(); i++) {
        if (lh._ri[rri[i]].size()) {
          double wgt = rval[i];
          const std::vector<unsigned int>&   lri = lh._ri[rri[i]];
          const std::vector<T>&             lval = lh._val[rri[i]];
          for (unsigned int j=0; j<lri.size(); j++) {
            acc(lri[j]) += wgt*lval[j];
	  }
	}
      }
    }
    out._ri[cr].resize(acc.NO());
    out._val[cr].resize(acc.NO());
    std::vector<unsigned int>&  ori = out._ri[cr];
    std::vector<T>&            oval = out._val[cr];
    for (unsigned int i=0; i<acc.NO(); i++) {
      ori[i] = acc.ri(i);
      oval[i] = acc.val(i);
    }
    out._nz += acc.NO();
  }
               
  return(out);     
}

/////////////////////////////////////////////////////////////////////
//
// Global functions for left and right multiplication with scalar
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator*(double s, const SpMat<T>& rh)
{
  return(SpMat<T>(rh) *= s);
}

template<class T>
const SpMat<T> operator*(const SpMat<T>& lh, double s)
{
  return(SpMat<T>(lh) *= s);
}

/////////////////////////////////////////////////////////////////////
//
// Global function for adding two sparse matrices
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator+(const SpMat<T>& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) += rh);
}

/////////////////////////////////////////////////////////////////////
//
// Global function for subtracting sparse from sparse matrix
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator-(const SpMat<T>& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) -= rh);
}

/////////////////////////////////////////////////////////////////////
//
// Global functions for horisontally concatenating sparse-sparse,
// full-sparse, sparse-full
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator|(const SpMat<T>& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) |= rh);
}

template<class T>
const SpMat<T> operator|(const NEWMAT::GeneralMatrix& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) |= rh);
}

template<class T>
const SpMat<T> operator|(const SpMat<T>& lh, const NEWMAT::GeneralMatrix& rh)
{
  return(SpMat<T>(lh) |= SpMat<T>(rh));
}

/////////////////////////////////////////////////////////////////////
//
// Global function for vertically concatenating sparse-sparse,
// full-sparse and sparse-full
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator&(const SpMat<T>& th, const SpMat<T>& bh)
{
  return(SpMat<T>(th) &= bh);
}

template<class T>
const SpMat<T> operator&(const NEWMAT::GeneralMatrix& th, const SpMat<T>& bh)
{
  return(SpMat<T>(th) &= bh);
}

template<class T>
const SpMat<T> operator&(const SpMat<T>& th, const NEWMAT::GeneralMatrix& bh)
{
  return(SpMat<T>(th) &= SpMat<T>(bh));
}

/*###################################################################
##
## Here starts hidden functions
##
###################################################################*/

/////////////////////////////////////////////////////////////////////
//
// Binary search. Returns true if key already exists. pos contains
// current position of key, or position to insert it in if key does
// not already exist.
//
/////////////////////////////////////////////////////////////////////

template<class T>
bool SpMat<T>::found(const std::vector<unsigned int>&  ri, unsigned int key, int& pos) const
{
  if (!ri.size() || key<ri[0]) {pos=0; return(false);}
  else if (key>ri.back()) {pos=ri.size(); return(false);}
  else {
    int mp=0;
    int ll=-1;       
    pos=int(ri.size());
    while ((pos-ll) > 1) {
      mp = (pos+ll) >> 1;   // Possibly faster than /2. Bit geeky though.
      if (key > ri[mp]) ll = mp;
      else pos = mp;
    }
  }
  if (ri[pos] == key) return(true);
  return(false);
} 

/////////////////////////////////////////////////////////////////////
//
// Return read/write reference to position i,j (one offset)
// N.B. should _not_ be used for read-only referencing since
// it will insert a value (0.0) at position i,j
//
/////////////////////////////////////////////////////////////////////

template<class T>
T& SpMat<T>::here(unsigned int r, unsigned int c)
{
  if (r<1 || r>_m || c<1 || c>_n) throw SpMatException("here: index out of range");
  
  int i = 0;
  if (!found(_ri[c-1],r-1,i)) {
    insert(_ri[c-1],i,r-1);
    insert(_val[c-1],i,static_cast<T>(0.0));
    _nz++;
  }
  return(_val[c-1][i]);
}

/////////////////////////////////////////////////////////////////////
//
// Open gap in vec at indx and fill with val. 
// Should have been templated, but I couldn't figure out how
// to, and still hide it inside SpMat
//
/////////////////////////////////////////////////////////////////////

template<class T>
void SpMat<T>::insert(std::vector<unsigned int>& vec, int indx, unsigned int val)
{
  vec.resize(vec.size()+1);
  for (int j=vec.size()-1; j>indx; j--) {
    vec[j] = vec[j-1];
  }
  vec[indx] = val;
}

template<class T>
void SpMat<T>::insert(std::vector<T>& vec, int indx, const T& val)
{
  vec.resize(vec.size()+1);
  for (int j=vec.size()-1; j>indx; j--) {
    vec[j] = vec[j-1];
  }
  vec[indx] = val;
}

/////////////////////////////////////////////////////////////////////
//
// Returns true if M has the same sparsity pattern as *this
//
/////////////////////////////////////////////////////////////////////

template<class T>
bool SpMat<T>::same_sparsity(const SpMat<T>& M) const
{
  if (_m != M._m || _n != M._n) return(false);
  for (unsigned int c=0; c<_n; c++) {
    if (_ri[c].size() != M._ri[c].size()) return(false);
  }
  for (unsigned int c=0; c<_n; c++) {
    const std::vector<unsigned int>& ri = _ri[c];
    const std::vector<unsigned int>& Mri = M._ri[c];
    for (unsigned int i=0; i<ri.size(); i++) {
      if (ri[i] != Mri[i]) return(false);
    }
  }
  return(true);
}

/////////////////////////////////////////////////////////////////////
//
// Adds a matrix to *this assuming identical sparsity patterns
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::add_same_sparsity_mat_to_me(const SpMat<T>& M, double s)
{
  for (unsigned int c=0; c<_n; c++) {
    if (_val[c].size()) {
      std::vector<T>&          val = _val[c];
      const std::vector<T>&    Mval = M._val[c];
      for (unsigned int i=0; i<val.size(); i++) {
        val[i] += s*Mval[i];
      }
    }
  }
  return(*this);
}

/////////////////////////////////////////////////////////////////////
//
// Adds a matrix to *this assuming non-identical sparsity patterns
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::add_diff_sparsity_mat_to_me(const SpMat<T>& M, double s)
{
  if (_m != M._m || _n != M._n) throw SpMatException("add_diff_sparsity_mat_to_me: Size mismatch between matrices");

  Accumulator<T> acc(_m);

  _nz = 0;
  for (unsigned int c=0; c<_n; c++) {
    acc.Reset();
    if (M._ri[c].size()) {
      const std::vector<unsigned int>&        Mri = M._ri[c];
      const std::vector<T>&                   Mval = M._val[c];
      for (unsigned int i=0; i<Mri.size(); i++) {
        acc(Mri[i]) += s*Mval[i];
      }
      std::vector<unsigned int>&        ri = _ri[c];
      std::vector<T>&                   val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        acc(ri[i]) += s*val[i];
      }
      ri.resize(acc.NO());
      val.resize(acc.NO());
      for (unsigned int i=0; i<acc.NO(); i++) {
        ri[i] = acc.ri(i);
        val[i] = acc.val(i);
      }
      _nz += acc.NO();
    }
  }
  return(*this);
}

/*
template<class T>
SpMat<T>& SpMat<T>::add_diff_sparsity_mat_to_me(const SpMat<T>& M, double s)
{
  if (_m != M._m || _n != M._n) throw SpMatException("add_diff_sparsity_mat_to_me: Size mismatch between matrices");

  for (unsigned int c=0; c<_n; c++) {
    if (M._ri[c].size()) {
      const std::vector<unsigned int>&        Mri = M._ri[c];
      const std::vector<T>&                   Mval = M._val[c];
      for (unsigned int i=0; i<Mri.size(); i++) {
        AddTo(Mri[i]+1,c+1,s*Mval[i]);
      }
    }
  }
  return(*this);
}
*/

/*###################################################################
##
## Here starts functions for helper class Accumulator
##
###################################################################*/

template<class T>
T& Accumulator<T>::operator()(unsigned int i)
{
  if (!_occ[i]) {
    if (_sorted && _no && i < _occi[_no-1]) _sorted = false;
    _occ[i] = true;
    _occi[_no++] = i;
  }
  return(_val[i]);
}

template<class T>
const Accumulator<T>& Accumulator<T>::ExtractCol(const SpMat<T>& M, unsigned int c)
{
  if (_sz != M._m) throw ;
  if (c<0 || c>(M._n-1)) throw ;
  if (_no) Reset();
  const std::vector<unsigned int>&      ri = M._ri[c];
  const std::vector<T>&                 val = M._val[c];
  for (unsigned int i=0; i<ri.size(); i++) {
    _occ[ri[i]] = true;
    _val[ri[i]] = val[i];
    _occi[_no++] = ri[i];
  }
  _sorted = true;  // Assuming M is sorted (should be)

  return(*this);
}

} // End namespace MISCMATHS

#endif // End #ifndef SpMat_h