Newer
Older
/* miscprob.cc
Christian Beckmann & Mark Woolrich, FMRIB Image Analysis Group
Copyright (C) 1999-2000 University of Oxford */
/* CCOPYRIGHT */
// Miscellaneous maths functions that rely on libprob
#include "miscprob.h"
#include "stdlib.h"
using namespace NEWMAT;
namespace MISCMATHS {
ReturnMatrix unifrnd(const int dim1, const int dim2, const float start, const float end)
{
int tdim = dim2;
double tmpD=1.0;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim);
for (int mc=1; mc<=res.Ncols(); mc++) {
for (int mr=1; mr<=res.Nrows(); mr++) {
tmpD = (rand()+1)/double(RAND_MAX+2.0);
res(mr,mc)=(tmpD)*(end-start)+start;
//drand(&tmpD);
//res(mr,mc)=(tmpD-1)*(end-start)+start;
// SJ. Generates a sample from a distribution given the histogram
int distribrnd(const ColumnVector& histo){
int res=1;
ColumnVector cumsum(histo.Nrows());
float sum=0.0;
for(int k=1;k<=histo.Nrows();k++){
sum += histo(k);
cumsum(k) = sum;
}
float U=rand()/float(RAND_MAX);
U *= sum;
for(int k=1;k<=histo.Nrows();k++){
if(U<cumsum(k)){
res = k;
break;
}
}
return res;
}
ReturnMatrix normrnd(const int dim1, const int dim2, const float mu, const float sigma)
{
int tdim = dim2;
double tmpD=1.0;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim);
for (int mc=1; mc<=res.Ncols(); mc++) {
for (int mr=1; mr<=res.Nrows(); mr++) {
tmpD = (rand()+1)/double(RAND_MAX+2.0);
res(mr,mc)=ndtri(tmpD)*sigma+mu ;
//drand(&tmpD);
//res(mr,mc)=ndtri(tmpD-1)*sigma+mu ;
}
}
res.Release();
return res;
}
ReturnMatrix normpdf(const RowVector& vals, const float mu, const float var)
{
RowVector res(vals);
for (int mc=1; mc<=res.Ncols(); mc++){
res(mc) = std::exp(-0.5*(std::pow(vals(mc)-mu,2)/var))*std::pow(2*M_PI*var,-0.5);
float normpdf(const ColumnVector& vals, const ColumnVector& mu, const SymmetricMatrix& sigma)
{
float res;
LogAndSign ld=(2*M_PI*sigma).LogDeterminant();
res = std::exp(-0.5*(
((vals-mu).t()*sigma.i()*(vals-mu)).AsScalar()
+ld.LogValue()
));
return res;
}
ReturnMatrix normpdf(const Matrix& vals, const ColumnVector& mu, const SymmetricMatrix& sigma)
{
RowVector res(vals);
LogAndSign ld = (2*M_PI*sigma).LogDeterminant();
Matrix isigma = sigma.i();
for (int mc=1; mc<=res.Ncols(); mc++){
res(mc) = std::exp( -0.5*(
((vals.Column(mc)-mu).t()*isigma*(vals.Column(mc)-mu)).AsScalar()
+ld.LogValue()
));
}
res.Release();
return res;
}
ReturnMatrix normcdf(const RowVector& vals, const float mu, const float var)
{
RowVector res(vals);
RowVector tmp;
tmp = (vals-mu)/std::sqrt(var);
for (int mc=1; mc<=res.Ncols(); mc++){
res(mc) = ndtr(tmp(mc));
}
res.Release();
return res;
}
ReturnMatrix gammacdf(const RowVector& vals, const float mu, const float var)
if((mu>0)&&(var>0)){
float b = std::pow(mu,2)/var;
float a = mu/var;
for (int mc=1; mc<=res.Ncols(); mc++){
if(vals(mc)>0)
res(mc) = gdtr(a,b,vals(mc));
}
}
res.Release();
return res;
}
ReturnMatrix gammapdf(const RowVector& vals, const float mu, const float var)
if((mu>0)&&(var>0.00001)){
float a = std::pow(mu,2)/var;
float b = mu/var;
float c = lgam(a);
if(std::abs(c) < 150){
for (int mc=1; mc<=res.Ncols(); mc++){
if(vals(mc)>0.000001){
res(mc) = std::exp(a*std::log(b) +
(a-1) * std::log(vals(mc))
- b*vals(mc) - c);
}
}
}
}
res.Release();
return res;
}
ReturnMatrix normpdf(const RowVector& vals, const RowVector& mu, const RowVector& var)
{
Matrix res(mu.Ncols(),vals.Ncols());
for (int mc=1; mc<=res.Ncols(); mc++){
for (int mr=1; mr<=res.Nrows(); mr++){
res(mr,mc) = std::exp(-0.5*(std::pow(vals(mc)-mu(mr),2)/var(mr)))*std::pow(2*M_PI*var(mr),-0.5);
}
}
res.Release();
return res;
}
ReturnMatrix mvnrnd(const RowVector& mu, const SymmetricMatrix& covar, int nsamp)
{
// Matrix eig_vec;
// DiagonalMatrix eig_val;
// EigenValues(covar,eig_val,eig_vec);
// Matrix ret = ones(nsamp, 1)*mu + dnormrandm(nsamp,mu.Ncols())*sqrt(eig_val)*eig_vec.t();
Mvnormrandm mvn(mu, covar);
return mvn.next(nsamp);
}
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// Saad: Wishart and inverseWishart Random Generator
ReturnMatrix wishrnd(const SymmetricMatrix& sigma,const int dof){
// compute cholesky factor for sigma
LowerTriangularMatrix L = Cholesky(sigma);
// for small degrees of freedom, use the definition
int n = sigma.Nrows();
Matrix X;
if(dof <= 81+n ){
X.ReSize(dof,n);
X = normrnd(dof,n) * L.t();
}
// otherwise, use Smith & Hocking procedure
else{
X.ReSize(n,n);
Matrix A(n,n);
for(int i=1;i<=n;i++){
Gamma G((dof-i+1)/2);
G.Set(rand()/float(RAND_MAX));
for(int j=1;j<=n;j++){
if (i>j) { A(i,j) = 0; }
else if(i<j) { A(i,j) = normrnd(1,1).AsScalar(); }
else { A(i,j) = std::sqrt(2*G.Next()); }
}
}
X = A * L.t();
}
SymmetricMatrix res(n);
res << X.t() * X;
res.Release();
return res;
}
ReturnMatrix iwishrnd(const SymmetricMatrix& sigma,const int dof){
// assumes inv-Wishart(sigma.i(),dof)
SymmetricMatrix res;
res = wishrnd(sigma,dof);
res = res.i();
res.Release();
return res;
}
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
ReturnMatrix perms(const int n){
if(n<=1){
Matrix P(1,1);
P << n;
P.Release();
return P;
}
Matrix Q = perms(n-1); // recursive calls
int m = Q.Nrows();
Matrix P(n*m,n);
for(int i=1;i<=m;i++){
P(i,1)=n;
for(int j=1;j<=Q.Ncols();j++)
P(i,j+1)=Q(i,j);
}
for(int i=n-1;i>=1;i--){
int jj=1;
for(int j=(n-i)*m+1;j<=(n-i+1)*m;j++){
P(j,1)=i;
for(int k=1;k<=n-1;k++){
P(j,k+1)= (Q(jj,k)==i) ? n : Q(jj,k);
}
jj++;
}
}
P.Release();
return P;
}