Newer
Older
Mark Jenkinson, Mark Woolrich, Christian Beckmann, Tim Behrens and Matthew Webster, FMRIB Image Analysis Group
Copyright (C) 1999-2009 University of Oxford */
/* CCOPYRIGHT */
// Miscellaneous maths functions
#define NOMINMAX
#include <cstdlib>
#include <cmath>
#include "newmatio.h"
Mark Jenkinson
committed
using namespace std;
namespace MISCMATHS {
// The following lines are ignored by the current SGI compiler
// (version egcs-2.91.57)
// A temporary fix of including the std:: in front of all abs() etc
// has been done for now
using std::abs;
using std::sqrt;
using std::exp;
using std::log;
// using std::pow;
using std::atan2;
Mark Jenkinson
committed
string size(const Matrix& mat)
{
string str = num2str(mat.Nrows())+"*"+num2str(mat.Ncols());
return str;
}
float Sinc(const float x) {
if (fabs(x)<1e-9) {
return 1-x*x*M_PI*M_PI/6.0;
} else {
return sin(M_PI*x)/(M_PI*x);
}
}
double Sinc(const double x) {
if (fabs(x)<1e-9) {
return 1-x*x*M_PI*M_PI/6.0;
} else {
return sin(M_PI*x)/(M_PI*x);
}
}
if (input.size()==0) return false;
char *pend;
strtod(input.c_str(),&pend);
if (*pend!='\0') return false;
return true;
}
string skip_alpha(ifstream& fs)
{
string cline;
while (!fs.eof()) {
Mark Jenkinson
committed
streampos curpos = fs.tellg();
getline(fs,cline);
cline += " "; // force extra entry in parsing
istringstream ss(cline.c_str());
string firstToken="";
ss >> firstToken; //Put first non-whitespace sequence into cc
if (isNumber(firstToken)) {
Mark Jenkinson
committed
if (!fs.eof()) { fs.seekg(curpos); } else { fs.clear(); fs.seekg(0,ios::beg); }
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
return cline;
}
}
return "";
}
ReturnMatrix read_ascii_matrix(int nrows, int ncols, const string& filename)
{
return read_ascii_matrix(filename,nrows,ncols);
}
ReturnMatrix read_ascii_matrix(const string& filename, int nrows, int ncols)
{
Matrix mat(nrows,ncols);
mat = 0.0;
if ( filename.size()<1 ) return mat;
ifstream fs(filename.c_str());
if (!fs) {
cerr << "Could not open matrix file " << filename << endl;
return mat;
}
mat = read_ascii_matrix(fs,nrows,ncols);
fs.close();
mat.Release();
return mat;
}
ReturnMatrix read_ascii_matrix(int nrows, int ncols, ifstream& fs)
{
return read_ascii_matrix(fs, nrows, ncols);
}
ReturnMatrix read_ascii_matrix(ifstream& fs, int nrows, int ncols)
{
Matrix mat(nrows,ncols);
mat = 0.0;
string ss="";
ss = skip_alpha(fs);
for (int r=1; r<=nrows; r++) {
for (int c=1; c<=ncols; c++) {
if (!fs.eof()) {
fs >> ss;
Mark Jenkinson
committed
mat(r,c) = atof(ss.c_str());
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
}
}
}
mat.Release();
return mat;
}
ReturnMatrix read_ascii_matrix(const string& filename)
{
Matrix mat;
if ( filename.size()<1 ) return mat;
ifstream fs(filename.c_str());
if (!fs) {
cerr << "Could not open matrix file " << filename << endl;
mat.Release();
return mat;
}
mat = read_ascii_matrix(fs);
fs.close();
mat.Release();
return mat;
}
ReturnMatrix read_ascii_matrix(ifstream& fs)
{
int nRows(0), nColumns(0);
string currentLine;
// skip initial non-numeric lines
// and count the number of columns in the first numeric line
currentLine = skip_alpha(fs);
currentLine += " ";
istringstream ss(currentLine.c_str());
string dummyToken="";
Mark Jenkinson
committed
do {
getline(fs,currentLine);
currentLine += " "; // force extra entry in parsing
istringstream ss(currentLine.c_str());
string firstToken("");
ss >> firstToken; //Put first non-whitespace sequence into cc
if (!isNumber(firstToken)) break; // stop processing when non-numeric line found
nRows++; // add new row to matrix
Mark Jenkinson
committed
} while (!fs.eof());
Mark Jenkinson
committed
// now know the size of matrix
fs.clear();
fs.seekg(0,ios::beg);
return read_ascii_matrix(fs,nRows,nColumns);
Mark Jenkinson
committed
}
#define BINFLAG 42
ReturnMatrix read_binary_matrix(const string& filename)
{
Matrix mres;
read_binary_matrix(mres,filename);
mres.Release();
return mres;
}
int read_binary_matrix(Matrix& mres, const string& filename)
{
if ( filename.size()<1 ) return 1;
ifstream fs(filename.c_str(), ios::in | ios::binary);
if (!fs) {
cerr << "Could not open matrix file " << filename << endl;
read_binary_matrix(mres,fs);
}
ReturnMatrix read_binary_matrix(ifstream& fs)
{
Matrix mres;
read_binary_matrix(mres,fs);
mres.Release();
return mres;
}
int read_binary_matrix(Matrix& mres, ifstream& fs)
Mark Jenkinson
committed
bool swapbytes = false;
unsigned int testval;
// test for byte swapping
fs.read((char*)&testval,sizeof(testval));
if (testval!=BINFLAG) {
Mark Jenkinson
committed
swapbytes = true;
Swap_Nbytes(1,sizeof(testval),&testval);
if (testval!=BINFLAG) {
cerr << "Unrecognised binary matrix file format" << endl;
Mark Jenkinson
committed
}
}
// read matrix dimensions (num rows x num cols)
Mark Jenkinson
committed
unsigned int ival,nx,ny;
// ignore the padding (reserved for future use)
fs.read((char*)&ival,sizeof(ival));
Mark Jenkinson
committed
if (swapbytes) Swap_Nbytes(1,sizeof(ival),&ival);
nx = ival;
fs.read((char*)&ival,sizeof(ival));
Mark Jenkinson
committed
if (swapbytes) Swap_Nbytes(1,sizeof(ival),&ival);
ny = ival;
// set up and read matrix (rows fast, cols slow)
Mark Jenkinson
committed
double val;
Mark Jenkinson
committed
if ( (((unsigned int) mres.Ncols())<ny) || (((unsigned int) mres.Nrows())<nx) ) {
mres.ReSize(nx,ny);
}
Mark Jenkinson
committed
for (unsigned int y=1; y<=ny; y++) {
for (unsigned int x=1; x<=nx; x++) {
Mark Jenkinson
committed
if (swapbytes) Swap_Nbytes(1,sizeof(val),&val);
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
}
// WRITE FUNCTIONS //
int write_ascii_matrix(const string& filename, const Matrix& mat,
int precision)
{
return write_ascii_matrix(mat, filename, precision);
}
int write_ascii_matrix(const Matrix& mat, const string& filename,
int precision)
{
Tracer tr("write_ascii_matrix");
if ( (filename.size()<1) ) return -1;
ofstream fs(filename.c_str());
if (!fs) {
cerr << "Could not open file " << filename << " for writing" << endl;
return -1;
}
int retval = write_ascii_matrix(mat,fs,precision);
fs.close();
return retval;
}
int write_ascii_matrix(ofstream& fs, const Matrix& mat,
int precision)
{
return write_ascii_matrix(mat, fs, precision);
}
int write_ascii_matrix(const Matrix& mat, ofstream& fs, int precision)
{
fs.setf(ios::floatfield); // use fixed or scientific notation as appropriate
if (precision>0) {
fs.precision(precision);
} else {
fs.precision(10); // default precision
}
#ifdef PPC64
int n=0;
#endif
for (int i=1; i<=mat.Nrows(); i++) {
for (int j=1; j<=mat.Ncols(); j++) {
fs << mat(i,j) << " ";
#ifdef PPC64
if ((n++ % 50) == 0) fs.flush();
#endif
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
}
fs << endl;
}
return 0;
}
int write_vest(string p_fname, const Matrix& x, int precision)
{ return write_vest(x,p_fname,precision); }
int write_vest(const Matrix& x, string p_fname, int precision)
{
ofstream out;
out.open(p_fname.c_str(), ios::out);
if(!out)
{
cerr << "Unable to open " << p_fname << endl;
return -1;
}
out << "! VEST-Waveform File" << endl;
out << "/NumWaves\t" << x.Ncols() << endl;
out << "/NumPoints\t" << x.Nrows() << endl;
out << "/Skip" << endl;
out << endl << "/Matrix" << endl;
int retval = write_ascii_matrix(x, out, precision);
out.close();
return retval;
}
int write_binary_matrix(const Matrix& mat, const string& filename)
{
Tracer tr("write_binary_matrix");
if ( (filename.size()<1) ) return -1;
ofstream fs(filename.c_str(), ios::out | ios::binary);
if (!fs) {
cerr << "Could not open file " << filename << " for writing" << endl;
return -1;
}
int retval = write_binary_matrix(mat,fs);
fs.close();
return retval;
}
int write_binary_matrix(const Matrix& mat, ofstream& fs)
{
Mark Jenkinson
committed
unsigned int ival, nx, ny;
ival = BINFLAG;
fs.write((char*)&ival,sizeof(ival));
ival = 0; // padding (reserved for future use)
fs.write((char*)&ival,sizeof(ival));
ival = mat.Nrows();
fs.write((char*)&ival,sizeof(ival));
ival = mat.Ncols();
fs.write((char*)&ival,sizeof(ival));
nx = mat.Nrows();
ny = mat.Ncols();
Mark Jenkinson
committed
double val;
#ifdef PPC64
int n=0;
#endif
Mark Jenkinson
committed
for (unsigned int y=1; y<=ny; y++) {
for (unsigned int x=1; x<=nx; x++) {
val = mat(x,y);
fs.write((char*)&val,sizeof(val));
#ifdef PPC64
if ((n++ % 50) == 0) fs.flush();
#endif
}
}
return 0;
}
// General mathematical functions
int round(int x) { return x; }
int round(float x)
{
if (x>0.0) return ((int) (x+0.5));
else return ((int) (x-0.5));
}
int round(double x)
{
if (x>0.0) return ((int) (x+0.5));
else return ((int) (x-0.5));
double rounddouble(double x){
return ( floor(x+0.5));
}
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
int periodicclamp(int x, int x1, int x2)
{
if (x2<x1) return periodicclamp(x,x2,x1);
int d = x2-x1+1;
int xp = x-x1;
if (xp>=0) {
return (xp % d) + x1;
} else {
xp = xp + d + std::abs(xp/d)*d;
assert(xp>0);
return periodicclamp(xp + d + std::abs(xp/d)*d,x1,x2);
}
}
ColumnVector cross(const ColumnVector& a, const ColumnVector& b)
{
Tracer tr("cross");
ColumnVector ans(3);
ans(1) = a(2)*b(3) - a(3)*b(2);
ans(2) = a(3)*b(1) - a(1)*b(3);
ans(3) = a(1)*b(2) - a(2)*b(1);
return ans;
}
ColumnVector cross(const Real *a, const Real *b)
{
Tracer tr("cross");
ColumnVector a1(3), b1(3);
a1 << a;
b1 << b;
return cross(a1,b1);
}
double norm2(const ColumnVector& x)
{
return std::sqrt(x.SumSquare());
}
double norm2sq(double a, double b, double c)
{
return a*a + b*b + c*c;
}
float norm2sq(float a, float b, float c)
int diag(Matrix& m, const float diagvals[])
{
Tracer tr("diag");
m=0.0;
for (int j=1; j<=m.Nrows(); j++)
m(j,j)=diagvals[j-1];
return 0;
}
int diag(DiagonalMatrix& m, const ColumnVector& diagvals)
{
Tracer tr("diag");
m.ReSize(diagvals.Nrows());
m=0.0;
for (int j=1; j<=diagvals.Nrows(); j++)
m(j)=diagvals(j);
return 0;
}
int diag(Matrix& m, const ColumnVector& diagvals)
{
Tracer tr("diag");
m.ReSize(diagvals.Nrows(),diagvals.Nrows());
m(j,j)=diagvals(j);
return 0;
}
ReturnMatrix diag(const Matrix& Mat)
{
Tracer tr("diag");
if(Mat.Ncols()==1){
Matrix retmat(Mat.Nrows(),Mat.Nrows());
diag(retmat,Mat);
retmat.Release();
return retmat;}
else{
int mindim = Min(Mat.Ncols(),Mat.Nrows());
Matrix retmat(mindim,1);
for(int ctr=1; ctr<=mindim;ctr++){
retmat(ctr,1)=Mat(ctr,ctr);
}
retmat.Release();
return retmat;
}
}
ReturnMatrix pinv(const Matrix& mat2)
// note that the right-pinv(x') = pinv(x).t()
Matrix mat(mat2);
if ( mat2.Ncols() > mat2.Nrows() )
mat=mat.t();
Tracer tr("pinv");
DiagonalMatrix D;
Matrix U, V;
SVD(mat,D,U,V);
float tol;
tol = MaximumAbsoluteValue(D) * Max(mat.Nrows(),mat.Ncols()) * 1e-16;
for (int n=1; n<=D.Nrows(); n++) {
Stephen Smith
committed
if (fabs(D(n,n))>tol) D(n,n) = 1.0/D(n,n);
else D(n,n) = 0.0; // reduce the number of columns because too close to singular
if ( mat2.Ncols() > mat2.Nrows() )
pinv=pinv.t();
int rank(const Matrix& X)
{
// calculates the rank of matrix X
Tracer tr("rank");
DiagonalMatrix eigenvals;
SVD(X,eigenvals);
double tolerance = Max(X.Nrows(),X.Ncols()) * eigenvals.Maximum() * 1e-16;
int therank=0;
for(int i=0; i<eigenvals.Nrows(); i++)
if (eigenvals(i+1)>tolerance)
therank++;
// cout << "tolerance = " << tolerance << "\n" << "eigenvalues = " << eigenvals << "\n" << "rank = " << therank << endl;
return therank;
}
ReturnMatrix sqrtaff(const Matrix& mat)
{
Tracer tr("sqrtaff");
Matrix matnew(4,4), rot, id4;
rot=IdentityMatrix(4);
id4=IdentityMatrix(4);
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
ColumnVector params(12), centre(3), trans(4);
centre = 0.0;
// Quaternion decomposition -> params(1..3) = sin(theta/2)*(unit_axis_vec)
// Want a new quaternion : q = sin(theta/4)*(unit_axis_vec)
// Therefore factor of conversion is: factor = sin(theta/4)/sin(theta/2)
// = 1/(2 * cos(theta/4)) which is calculated below
// NB: t = theta/2
decompose_aff(params,mat,centre,rotmat2quat);
double sint;
sint = std::sqrt(params(1)*params(1) + params(2)*params(2) +
params(3)*params(3));
double t = asin(sint);
double factor = 1.0/(2.0*cos(0.5*t));
params(1) = factor * params(1);
params(2) = factor * params(2);
params(3) = factor * params(3);
params(7) = std::sqrt(params(7));
params(8) = std::sqrt(params(8));
params(9) = std::sqrt(params(9));
params(10) = 0.5*params(10);
params(11) = 0.5*params(11);
params(12) = 0.5*params(12);
construct_rotmat_quat(params,3,rot,centre);
rot(1,4) = 0.0;
rot(2,4) = 0.0;
rot(3,4) = 0.0;
scale(1,1)=params(7);
scale(2,2)=params(8);
scale(3,3)=params(9);
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
skew(1,2)=params(10);
skew(1,3)=params(11);
skew(2,3)=params(12);
trans(1) = params(4);
trans(2) = params(5);
trans(3) = params(6);
trans(4) = 1.0;
// The translation, being independent of the 3x3 submatrix, is
// calculated so that it will be equal for each of the two
// halves of the approximate square root
// (i.e. matnew and mat*matnew.i() have exactly the same translation)
ColumnVector th(4);
th = (mat*scale.i()*skew.i()*rot.i() + id4).SubMatrix(1,3,1,3).i()
* trans.SubMatrix(1,3,1,1);
matnew = rot*skew*scale;
matnew(1,4) = th(1);
matnew(2,4) = th(2);
matnew(3,4) = th(3);
matnew.Release();
return matnew;
}
Mark Jenkinson
committed
bool strict_less_than(pair<double, int> x, pair<double, int> y) { return x.first < y.first; }
vector<int> get_sortindex(const Matrix& vals, const string& mode, int col)
{
// mode is either "new2old" or "old2new"
// return the mapping of old and new indices in the *ascending* sort of vals (from column=col)
int length=vals.Nrows();
vector<pair<double, int> > sortlist(length);
for (int n=0; n<length; n++) {
sortlist[n] = pair<double, int>((double) vals(n+1,col),n+1);
}
Mark Jenkinson
committed
sort(sortlist.begin(),sortlist.end(),strict_less_than); // O(N.log(N))
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
vector<int> idx(length);
for (int n=0; n<length; n++) {
if (mode=="old2new") {
// here idx[n] is the where in the ordered list the old n'th row is mapped to (i.e. idx[n] = rank)
idx[sortlist[n].second-1] = n+1;
} else if (mode=="new2old") {
// here idx[n] is the the old row number of the n'th ordered item (i.e. idx[n] is old row number with rank = n)
idx[n] = sortlist[n].second;
} else {
cerr << "ERROR:: unknown mode in get_sortidx = " << mode << endl;
}
}
return idx;
}
Matrix apply_sortindex(const Matrix& vals, vector<int> sidx, const string& mode)
{
// mode is either "new2old" or "old2new"
// apply the index mapping from get_sortindex to the whole matrix (swapping rows)
Matrix res(vals);
res=0.0;
int ncols=vals.Ncols();
for (unsigned int n=0; n<sidx.size(); n++) {
int row = sidx[n];
if (mode=="old2new") {
res.SubMatrix(row,row,1,ncols)=vals.SubMatrix(n+1,n+1,1,ncols);
} else if (mode=="new2old") {
res.SubMatrix(n+1,n+1,1,ncols)=vals.SubMatrix(row,row,1,ncols);
} else {
cerr << "ERROR:: unknown mode in apply_sortidx = " << mode << endl;
}
}
return res;
}
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
//------------------------------------------------------------------------//
// Handy MATLAB-like functions
void reshape(Matrix& r, const Matrix& m, int nrows, int ncols)
{
Tracer tr("reshape");
if (nrows*ncols != m.Nrows() * m.Ncols() ) {
cerr << "WARNING: cannot reshape " << m.Nrows() << "x"
<< m.Ncols() << " matrix into " << nrows << "x"
<< ncols << endl;
cerr << " Returning original matrix instead" << endl;
r = m;
return;
}
r.ReSize(nrows,ncols);
int rr = 1, rc = 1;
for (int mc=1; mc<=m.Ncols(); mc++) {
for (int mr=1; mr<=m.Nrows(); mr++) {
r(rr,rc) = m(mr,mc);
rr++;
if (rr>nrows) {
rc++;
rr=1;
}
}
}
}
ReturnMatrix reshape(const Matrix& m, int nrows, int ncols)
{
Tracer tr("reshape");
Matrix r;
reshape(r,m,nrows,ncols);
r.Release();
return r;
}
int addrow(Matrix& m, int ncols)
{
if (m.Nrows()==0) {
Matrix mm(1,ncols);
mm=0;
m = mm;
} else {
Matrix mm(m.Nrows()+1,ncols);
mm = 0;
mm.SubMatrix(1,m.Nrows(),1,ncols) = m;
m = mm;
}
return 0;
}
//------------------------------------------------------------------------//
// Spatial transformation functions (rotations and affine transforms)
int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff,
const ColumnVector& centre)
{
Tracer tr("construct_rotmat_euler");
ColumnVector angl(3);
Matrix newaff(4,4);
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
if (n<=0) return 0;
// order of parameters is 3 rotation + 3 translation
// angles are in radians
// order of parameters is (Rx,Ry,Rz) and R = Rx.Ry.Rz
angl=0.0;
angl(1)=params(1);
make_rot(angl,centre,newaff);
aff = aff * newaff;
if (n==1) return 0;
angl=0.0;
angl(2)=params(2);
make_rot(angl,centre,newaff);
aff = aff * newaff;
if (n==2) return 0;
angl=0.0;
angl(3)=params(3);
make_rot(angl,centre,newaff);
aff = aff * newaff;
if (n==3) return 0;
aff(1,4)+=params(4);
if (n==4) return 0;
aff(2,4)+=params(5);
if (n==5) return 0;
aff(3,4)+=params(6);
if (n==6) return 0;
return 1;
}
int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff)
{
Tracer tr("construct_rotmat_euler");
ColumnVector centre(3);
centre = 0.0;
return construct_rotmat_euler(params,n,aff,centre);
}
int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff,
const ColumnVector& centre)
{
Tracer tr("construct_rotmat_quat");
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
if (n<=0) return 0;
// order of parameters is 3 rotation (last 3 quaternion components)
// + 3 translation
if ((n>=1) && (n<3)) { cerr<<"Can only do 3 or more, not "<< n <<endl; }
float w, w2 = 1.0 - Sqr(params(1)) - Sqr(params(2)) - Sqr(params(3));
if (w2 < 0.0) {
cerr << "Parameters do not form a valid axis - greater than unity\n";
return -1;
}
w = std::sqrt(w2);
float x=params(1), y=params(2), z=params(3);
aff(1,1) = 1 - 2*y*y - 2*z*z;
aff(2,2) = 1 - 2*x*x - 2*z*z;
aff(3,3) = 1 - 2*x*x - 2*y*y;
aff(1,2) = 2*x*y - 2*w*z;
aff(2,1) = 2*x*y + 2*w*z;
aff(1,3) = 2*x*z + 2*w*y;
aff(3,1) = 2*x*z - 2*w*y;
aff(2,3) = 2*y*z - 2*w*x;
aff(3,2) = 2*y*z + 2*w*x;
// Given Rotation matrix R: x' = Rx + (I-R)*centre
ColumnVector trans(3);
trans = aff.SubMatrix(1,3,1,3)*centre;
aff.SubMatrix(1,3,4,4) = centre - trans;
aff(1,4) += params(4);
if (n==4) return 0;
aff(2,4) += params(5);
if (n==5) return 0;
aff(3,4) += params(6);
if (n==6) return 0;
return 1;
}
int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff)
{
Tracer tr("construct_rotmat_quat");
ColumnVector centre(3);
centre = 0.0;
return construct_rotmat_quat(params,n,aff,centre);
}
int make_rot(const ColumnVector& angl, const ColumnVector& centre,
Matrix& rot)
{
// Matrix rot must be 4x4; angl and orig must be length 3
Tracer tr("make_rot");
rot=IdentityMatrix(4); // default return value
float theta;
theta = norm2(angl);
if (theta<1e-8) { // avoid round-off errors and return Identity
return 0;
}
ColumnVector axis = angl/theta;
ColumnVector x1(3), x2(3), x3(3);
x1 = axis;
x2(1) = -axis(2); x2(2) = axis(1); x2(3) = 0.0;
if (norm2(x2)<=0.0) {
x2(1) = 1.0; x2(2) = 0.0; x2(3) = 0.0;
}
x2 = x2/norm2(x2);
x3 = cross(x1,x2);
x3 = x3/norm2(x3);
Matrix basischange(3,3);
basischange.SubMatrix(1,3,1,1) = x2;
basischange.SubMatrix(1,3,2,2) = x3;
basischange.SubMatrix(1,3,3,3) = x1;
rotcore(1,1)=cos(theta);
rotcore(2,2)=cos(theta);
rotcore(1,2)=sin(theta);
rotcore(2,1)=-sin(theta);
rot.SubMatrix(1,3,1,3) = basischange * rotcore * basischange.t();
ColumnVector trans(3);
trans = (ident3 - rot.SubMatrix(1,3,1,3))*centre;
rot.SubMatrix(1,3,4,4)=trans;
return 0;
}
int getrotaxis(ColumnVector& axis, const Matrix& rotmat)
{
Tracer tr("getrotaxis");
Matrix residuals(3,3);
residuals = rotmat*rotmat.t() - IdentityMatrix(3);
if (residuals.SumSquare() > 1e-4)
{ cerr << "Failed orthogonality check!" << endl; return -1; }
Matrix u(3,3), v(3,3);
DiagonalMatrix d(3);
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// return column of V corresponding to minimum value of |S|
for (int i=1; i<=3; i++) {
if (fabs(d(i))<1e-4) axis = v.SubMatrix(1,3,i,i);
}
return 0;
}
int rotmat2euler(ColumnVector& angles, const Matrix& rotmat)
{
// uses the convention that R = Rx.Ry.Rz
Tracer tr("rotmat2euler");
float cz, sz, cy, sy, cx, sx;
cy = std::sqrt(Sqr(rotmat(1,1)) + Sqr(rotmat(1,2)));
if (cy < 1e-4) {
//cerr << "Cos y is too small - Gimbal lock condition..." << endl;
cx = rotmat(2,2);
sx = -rotmat(3,2);
sy = -rotmat(1,3);
angles(1) = atan2(sx,cx);
angles(2) = atan2(sy,(float)0.0);
angles(3) = 0.0;
} else {
// choose by convention that cy > 0
// get the same rotation if: sy stays same & all other values swap sign
cz = rotmat(1,1)/cy;
sz = rotmat(1,2)/cy;
cx = rotmat(3,3)/cy;
sx = rotmat(2,3)/cy;
sy = -rotmat(1,3);
//atan2(sin,cos) (defined as atan2(y,x))
angles(1) = atan2(sx,cx);
angles(2) = atan2(sy,cy);
angles(3) = atan2(sz,cz);
}
return 0;
}
int rotmat2quat(ColumnVector& quaternion, const Matrix& rotmat)
{
Tracer tr("rotmat2quat");
float trace = rotmat.SubMatrix(1,3,1,3).Trace();
if (trace > 0) {
float w = std::sqrt((trace + 1.0)/4.0);
quaternion(1) = (rotmat(3,2) - rotmat(2,3))/(4.0*w);
quaternion(2) = (rotmat(1,3) - rotmat(3,1))/(4.0*w);
quaternion(3) = (rotmat(2,1) - rotmat(1,2))/(4.0*w);
} else if ((rotmat(1,1) > rotmat(2,2)) && (rotmat(1,1) > rotmat(3,3))) {
// first col case
float s = std::sqrt(1.0 + rotmat(1,1) - rotmat(2,2) - rotmat(3,3)) * 2.0;
quaternion(1) = 0.5 / s;
quaternion(2) = (-rotmat(1,2) - rotmat(1,2)) / s;
quaternion(3) = (-rotmat(1,3) - rotmat(3,1)) / s;
} else if ((rotmat(2,2) > rotmat(1,1)) && (rotmat(2,2) > rotmat(3,3))) {
// 2nd col case
float s = std::sqrt(1.0 + rotmat(2,2) - rotmat(1,1) - rotmat(3,3)) * 2.0;
quaternion(1) = (-rotmat(1,2) - rotmat(2,1)) / s;
quaternion(2) = 0.5 / s;
quaternion(3) = (-rotmat(2,3) - rotmat(3,2)) / s;
} else if ((rotmat(3,3) > rotmat(1,1)) && (rotmat(3,3) > rotmat(2,2))) {
// 3rd col case
float s = std::sqrt(1.0 + rotmat(3,3) - rotmat(1,1) - rotmat(2,2)) * 2.0;
quaternion(1) = (-rotmat(1,3) - rotmat(3,1)) / s;
quaternion(2) = (-rotmat(2,3) - rotmat(3,2)) / s;
quaternion(3) = 0.5 / s;
}
return 0;
}
int decompose_aff(ColumnVector& params, const Matrix& affmat,
const ColumnVector& centre,
int (*rotmat2params)(ColumnVector& , const Matrix& ))
{
// decomposes using the convention: mat = rotmat * skew * scale
// order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
// angles are in radians
Tracer tr("decompose_aff");
if (params. Nrows() < 12)
params.ReSize(12);
if (rotmat2params==0)
{
cerr << "No rotmat2params function specified" << endl;
return -1;
}
ColumnVector x(3), y(3), z(3);
Matrix aff3(3,3);
aff3 = affmat.SubMatrix(1,3,1,3);
x = affmat.SubMatrix(1,3,1,1);
y = affmat.SubMatrix(1,3,2,2);
z = affmat.SubMatrix(1,3,3,3);
float sx, sy, sz, a, b, c;
sx = norm2(x);
sy = std::sqrt( dot(y,y) - (Sqr(dot(x,y)) / Sqr(sx)) );
a = dot(x,y)/(sx*sy);
ColumnVector x0(3), y0(3);
x0 = x/sx;
y0 = y/sy - a*x0;
sz = std::sqrt(dot(z,z) - Sqr(dot(x0,z)) - Sqr(dot(y0,z)));
b = dot(x0,z)/sz;
c = dot(y0,z)/sz;
params(7) = sx; params(8) = sy; params(9) = sz;
Matrix scales(3,3);
float diagvals[] = {sx,sy,sz};
diag(scales,diagvals);
Real skewvals[] = {1,a,b,0 , 0,1,c,0 , 0,0,1,0 , 0,0,0,1};
Matrix skew(4,4);