Newer
Older
mni_new_origin<<mni(1)+mni_origin(1)<<mni(2)+mni_origin(2)<<mni(3)+mni_origin(3)<<1;
img_mm=mni2img*mni_new_origin;
img_vox<<img_mm(1)/img_dims(1)<<img_mm(2)/img_dims(2)<<img_mm(3)/img_dims(3);
img_vox.Release();
return img_vox;
}
void remmean_econ(Matrix& mat, const int dim)
{
Matrix matmean;
remmean(mat, matmean, dim);
void remmean(Matrix& mat, Matrix& matmean, const int dim)
{
matmean = mean(mat,dim);
if (dim == 1){
for (int mr=1; mr<=mat.Nrows(); mr++)
mat.Row(mr) -= matmean.AsRow();
}
else{
for (int mc=1; mc<=mat.Ncols(); mc++)
mat.Column(mc) -= matmean.AsColumn();
}
}
void remmean(const Matrix& mat, Matrix& demeanedmat, Matrix& Mean, const int dim)
{
demeanedmat = mat;
remmean(demeanedmat,Mean, dim);
}
ReturnMatrix remmean(const Matrix& mat, const int dim)
{
Matrix res = mat;
remmean_econ(res,dim);
res.Release();
return res;
/* ReturnMatrix cov(const Matrix& mat, const int norm)
{
SymmetricMatrix res;
Matrix tmp;
int N;
tmp=remmean(mat);
if (norm == 1) {N = mat.Nrows();}
else {N = mat.Nrows()-1;}
res << tmp.t()*tmp;
res = res/N;
res.Release();
return res;
}
ReturnMatrix cov(const Matrix& mat, const int norm)
res << ones(mat.Ncols(),mat.Ncols());
Matrix meanM;
int N;
meanM = mean(mat);
if (norm == 1) {N = mat.Nrows();}
else {N = mat.Nrows()-1;}
for (int ctr=1; ctr <= mat.Nrows(); ctr++)
res << res + (mat.Row(ctr) - meanM ).t() * (mat.Row(ctr) - meanM);
res = res/N;
ReturnMatrix corrcoef(const Matrix& mat, const int norm)
{
SymmetricMatrix res;
res = cov(mat,norm);
Matrix D;
D=diag(res);
D=sqrt(D*D.t());
res << SD(res,D);
res.Release();
return res;
}
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
ReturnMatrix flipud(const Matrix& mat)
{
Matrix rmat(mat.Nrows(),mat.Ncols());
for(int j=1;j<=mat.Ncols();j++)
for(int i=1;i<=mat.Nrows();i++)
rmat(i,j)=mat(mat.Nrows()-i+1,j);
rmat.Release();
return rmat;
}
ReturnMatrix fliplr(const Matrix& mat)
{
Matrix rmat(mat.Nrows(),mat.Ncols());
for(int j=1;j<=mat.Ncols();j++)
for(int i=1;i<=mat.Nrows();i++)
rmat(i,j)=mat(i,mat.Ncols()-j+1);
rmat.Release();
return rmat;
}
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
void symm_orth(Matrix &Mat)
{
SymmetricMatrix Metric;
Metric << Mat.t()*Mat;
Metric = Metric.i();
Matrix tmpE;
DiagonalMatrix tmpD;
EigenValues(Metric,tmpD,tmpE);
Mat = Mat * tmpE * sqrt(abs(tmpD)) * tmpE.t();
}
void powerspectrum(const Matrix &Mat1, Matrix &Result, bool useLog)
//calculates the powerspectrum for every column of Mat1
{
Matrix res;
for(int ctr=1; ctr <= Mat1.Ncols(); ctr++)
{
ColumnVector tmpCol;
tmpCol=Mat1.Column(ctr);
ColumnVector FtmpCol_real;
ColumnVector FtmpCol_imag;
ColumnVector tmpPow;
RealFFT(tmpCol,FtmpCol_real,FtmpCol_imag);
pow(FtmpCol_real,2);
pow(FtmpCol_imag,2);
tmpPow = FtmpCol_real+FtmpCol_imag;
if(res.Storage()==0){res= tmpPow;}else{res|=tmpPow;}
}
Result=res;
}
void element_mod_n(Matrix& Mat,double n)
{
//represent each element in modulo n (useful for wrapping phases (n=2*M_PI))
double tmp;
for( int j=1;j<=Mat.Ncols();j++){
tmp = ( Mat(i,j) - rounddouble(Mat(i,j)/n)*n );
Mat(i,j)= tmp > 0 ? tmp : tmp + n;
}
}
}
}
Mark Jenkinson
committed
return (int)pow(2,ceil(log(float(n))/log(float(2))));
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
}
void xcorr(const Matrix& p_ts, Matrix& ret, int lag, int p_zeropad)
{
Tracer tr("MISCMATHS::xcorr");
int sizeTS = p_ts.Nrows();
int numTS = p_ts.Ncols();
if(p_zeropad == 0)
p_zeropad = sizeTS;
if(lag == 0)
lag = sizeTS;
ColumnVector x(p_zeropad);
x = 0;
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(p_zeropad);
ColumnVector dummy2;
dummy = 0;
ColumnVector realifft(p_zeropad);
ret.ReSize(lag,numTS);
ret = 0;
for(int i = 1; i <= numTS; i++)
{
x.Rows(1,sizeTS) = p_ts.Column(i);
FFT(x, dummy, fft_real, fft_im);
for(int j = 1; j <= p_zeropad; j++)
{
// (x+iy)(x-iy) = x^2 + y^2
fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
fft_im(j) = 0;
}
FFTI(fft_real, fft_im, realifft, dummy2);
float varx = var(x.Rows(1,sizeTS)).AsScalar();
ret.Column(i) = realifft.Rows(1,lag);
Mark Jenkinson
committed
for(int j = 1; j <= lag-1; j++)
{
// Correction to make autocorr unbiased and normalised
Mark Jenkinson
committed
ret(j,i) = ret(j,i)/((sizeTS-j)*varx);
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
}
}
}
ReturnMatrix xcorr(const Matrix& p_ts, int lag, int p_zeropad )
{
Matrix r;
xcorr(p_ts,r,lag,p_zeropad);
r.Release();
return r;
}
void detrend(Matrix& p_ts, int p_level)
{
Tracer trace("MISCMATHS::detrend");
int sizeTS = p_ts.Nrows();
// p_ts = b*a + e (OLS regression)
// e is detrended data
Matrix a(sizeTS, p_level+1);
// Create a
for(int t = 1; t <= sizeTS; t++)
{
for(int l = 0; l <= p_level; l++)
Mark Jenkinson
committed
a(t,l+1) = pow((float)t/sizeTS,l);
Matrix R = IdentityMatrix(sizeTS)-a*pinv(a);
Mark Jenkinson
committed
for(int t = 1; t <= sizeTS; t++)
Mark Jenkinson
committed
p_ts.Column(t) = R*p_ts.Column(t);
}
}
ReturnMatrix read_vest(string p_fname)
{
ifstream in;
in.open(p_fname.c_str(), ios::in);
if(!in) throw Exception(string("Unable to open "+p_fname).c_str());
int numWaves = 0;
int numPoints = 0;
string str;
while(true)
{
if(!in.good()) throw Exception(string(p_fname+" is not a valid vest file").c_str());
in >> str;
if(str == "/Matrix")
break;
else if(str == "/NumWaves")
{
in >> numWaves;
}
else if(str == "/NumPoints" || str == "/NumContrasts")
{
in >> numPoints;
}
}
Matrix p_mat(numPoints, numWaves);
for(int i = 1; i <= numPoints; i++)
{
for(int j = 1; j <= numWaves; j++)
{
if (!in.eof()) in >> ws >> p_mat(i,j) >> ws;
else throw Exception(string(p_fname+" has insufficient data points").c_str());
}
}
in.close();
p_mat.Release();
return p_mat;
}
void ols(const Matrix& data,const Matrix& des,const Matrix& tc, Matrix& cope,Matrix& varcope){
// ols
// data is t x v
// des is t x ev (design matrix)
// tc is cons x ev (contrast matrix)
// cope and varcope will be cons x v
// but will be resized if they are wrong
// hence may be passed in uninitialised
// TB 2004
if(data.Nrows() != des.Nrows()){
cerr <<"MISCMATHS::ols - data and design have different number of time points"<<endl;
exit(-1);
}
if(des.Ncols() != tc.Ncols()){
cerr <<"MISCMATHS::ols - design and contrast matrix have different number of EVs"<<endl;
exit(-1);
}
Matrix pdes = pinv(des);
Matrix prevar=diag(tc*pdes*pdes.t()*tc.t());
Matrix R=IdentityMatrix(des.Nrows())-des*pdes;
float tR=R.Trace();
Matrix pe=pdes*data;
cope=tc*pe;
Matrix res=data-des*pe;
Matrix sigsq=sum(SP(res,res))/tR;
varcope=prevar*sigsq;
}
if ( des.Nrows() > 4000 ) //Use the simple version as huge designs require too much RAM in the full calculation
return des.Nrows() - des.Ncols();
try {
Matrix R=IdentityMatrix(des.Nrows())-des*pdes;
return R.Trace();}
catch (...) {
cerr << "ols_dof: Error in determining the trace, resorting to basic calculation" << endl;
}
return des.Nrows() - des.Ncols();
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b, int maxit,
float reltol)
{
// solves: A * x = b (for x)
// implementation of algorithm in Golub and Van Loan (3rd ed, page 527)
ColumnVector rk1, rk2, pk, apk;
double betak, alphak, rk1rk1=0, rk2rk2, r00=0;
int k=0;
rk1 = b - A*x; // a *big* calculation
for (int n=1; n<=maxit; n++) {
k++;
if (k==1) {
pk = rk1;
rk1rk1 = (rk1.t() * rk1).AsScalar();
} else {
rk2rk2 = rk1rk1; // from before
rk1rk1 = (rk1.t() * rk1).AsScalar();
if (rk2rk2<1e-10*rk1rk1) {
cerr << "WARNING:: Conj Grad - low demoninator (rk2rk2)" << endl;
if (rk2rk2<=0) {
cerr << "Aborting conj grad ..." << endl;
return 1;
}
}
betak = rk1rk1 / rk2rk2;
pk = rk1 + betak * pk; // note RHS pk is p(k-1) in algorithm
}
// stop if sufficient accuracy is achieved
if (rk1rk1<reltol*reltol*r00) return 0;
apk = A * pk; // the *big* calculation in this algorithm
ColumnVector pap = pk.t() * apk;
if (pap.AsScalar()<0) {
cerr << "ERROR:: Conj Grad - negative eigenvector found (matrix must be symmetric and positive-definite)\nAborting ... " << endl;
return 2;
} else if (pap.AsScalar()<1e-10) {
cerr << "WARNING:: Conj Grad - nearly null eigenvector found (terminating early)" << endl;
return 1;
} else {
alphak = rk1rk1 / pap.AsScalar();
}
x = x + alphak * pk; // note LHS is x(k) and RHS is x(k-1) in algorithm
rk2 = rk1; // update prior to the next step
rk1 = rk1 - alphak * apk; // note LHS is r(k) in algorithm
}
return 0;
}
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b, int maxit)
{
return conjgrad(x,A,b,maxit,1e-10);
}
float csevl(const float x, const ColumnVector& cs, const int n)
{
float b0 = 0;
float b1 = 0;
float b2 = 0;
const float twox=2*x;
for(int i=1; i<=n; i++)
{
b2=b1;
b1=b0;
b0=twox*b1-b2+cs(n+1-i);
}
return 0.5*(b0-b2);
}
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
float digamma(const float x)
{
int ntapsi(16);
int ntpsi(23);
ColumnVector psics(ntpsi);
ColumnVector apsics(ntapsi);
psics << -.038057080835217922E0<<
.49141539302938713E0<<
-.056815747821244730E0<<
.008357821225914313E0<<
-.001333232857994342E0<<
.000220313287069308E0<<
-.000037040238178456E0<<
.000006283793654854E0<<
-.000001071263908506E0<<
.000000183128394654E0<<
-.000000031353509361E0<<
.000000005372808776E0<<
-.000000000921168141E0<<
.000000000157981265E0<<
-.000000000027098646E0<<
.000000000004648722E0<<
-.000000000000797527E0<<
.000000000000136827E0<<
-.000000000000023475E0<<
.000000000000004027E0<<
-.000000000000000691E0<<
.000000000000000118E0<<
-.000000000000000020E0;
apsics <<-.0204749044678185E0<<
-.0101801271534859E0<<
.0000559718725387E0<<
-.0000012917176570E0<<
.0000000572858606E0<<
-.0000000038213539E0<<
.0000000003397434E0<<
-.0000000000374838E0<<
.0000000000048990E0<<
-.0000000000007344E0<<
.0000000000001233E0<<
-.0000000000000228E0<<
.0000000000000045E0<<
-.0000000000000009E0<<
.0000000000000002E0<<
-.0000000000000000E0;
float y = fabs(x);
float psi;
if(y<2.0)
{
// do we need to deal with the following case?
// c psi(x) for -2. .lt. x .lt. 2.
int n = int(floor(x));
y = x - n;
n = n - 1;
psi = csevl(2*y-1, psics, ntpsi);
if(n==-1)
{
psi = psi - 1.0/x;
}
}
else
{
const float aux = csevl(8/(Sqr(y))-1, apsics, ntapsi);
Mark Jenkinson
committed
psi = log(x) - 0.5/x + aux;
void glm_vb(const Matrix& X, const ColumnVector& Y, ColumnVector& B, SymmetricMatrix& ilambda_B, int niters)
// Does Variational Bayes inference on GLM Y=XB+e with ARD priors on B
// design matrix X should be num_tpts*num_evs
/////////////////////
// setup
OUT("Setup");
int ntpts=Y.Nrows();
throw Exception("COCK");
OUT(nevs);
OUT(ntpts);
ColumnVector gam_m(nevs);
gam_m=1e10;
float gam_y;
ColumnVector lambdaB(nevs);
if(nevs<ntpts-10)
// initialise with OLS
B=pinv(X)*Y;
ColumnVector res=Y-X*B;
gam_y=(ntpts-nevs)/(res.t()*res).AsScalar();
ilambda_B << (X.t()*X*gam_y).i();
lambdaB=0;
for(int l=1; l <= nevs; l++)
{
lambdaB(l)=ilambda_B(l,l);
}
else
{
OUT("no ols");
B.ReSize(nevs);
B=0;
lambdaB=1;
// ColumnVector res=Y-X*B;
// gam_y=ntpts/(res.t()*res).AsScalar();
gam_y=10;
}
// OUT(B(1));
// OUT(lambdaB(1));
float trace_ilambdaZZ=1;
SymmetricMatrix ZZ;
float YY=0;
for(int t=1; t <= ntpts; t++)
YY += Sqr(Y(t));
/////////////////////
// iterate
OUT("Iterate");
int i = 1;;
for(; i<=niters; i++)
{
Mark Jenkinson
committed
for(int l=1; l <= nevs; l++)
Mark Jenkinson
committed
float b_m = 1.0/(0.5*(Sqr(B(l))+lambdaB(l))+1.0/b_m0);
gam_m(l) = b_m*c_m;
////////////////////
// update B
ColumnVector beta(nevs);
beta = 0;
SymmetricMatrix lambda_B(nevs);
lambda_B = 0;
Mark Jenkinson
committed
for(int l=1; l <= nevs; l++)
lambda_B(l,l)=gam_m(l);
SymmetricMatrix tmp = lambda_B + gam_y*ZZ;
lambda_B << tmp;
beta += gam_y*ZY;
ilambda_B << lambda_B.i();
lambdaB.ReSize(nevs);
lambdaB=0;
for(int l=1; l <= nevs; l++)
{
lambdaB(l)=ilambda_B(l,l);
}
////////////////////
// compute trace for noise precision phiy update
SymmetricMatrix tmp3;
tmp3 << ilambda_B;
SymmetricMatrix tmp2;
tmp2 << tmp3*ZZ;
trace_ilambdaZZ=tmp2.Trace();
/////////////////////
// update phiy
float b_y0 = 1e10;
float c_y0 = 1;
float sum = YY + (B.t()*ZZ*B).AsScalar() - 2*(B.t()*ZY).AsScalar();
float b_y = 1.0/(0.5*(sum + trace_ilambdaZZ)+1/b_y0);
gam_y = b_y*c_y;
// OUT(gam_y);
}
vector<float> ColumnVector2vector(const ColumnVector& col)
{
vector<float> vec(col.Nrows());
for(int c = 0; c < col.Nrows(); c++)
vec[c] = col(c+1);
return vec;
}
Mark Jenkinson
committed
/////////////////////////////////////////////////////////////////////////////////////////////////////
// Uninteresting byte swapping functions
Mark Jenkinson
committed
typedef struct { unsigned char a,b ; } TWObytes ;
Mark Jenkinson
committed
void Swap_2bytes( int n , void *ar ) /* 2 bytes at a time */
{
register TWObytes *tb = (TWObytes *)ar ;
Mark Jenkinson
committed
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].b ; tb[ii].b = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
typedef struct { unsigned char a,b,c,d ; } FOURbytes ;
Mark Jenkinson
committed
void Swap_4bytes( int n , void *ar ) /* 4 bytes at a time */
{
register int ii ;
register FOURbytes *tb = (FOURbytes *)ar ;
Mark Jenkinson
committed
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].d ; tb[ii].d = tt ;
tt = tb[ii].b ; tb[ii].b = tb[ii].c ; tb[ii].c = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
typedef struct { unsigned char a,b,c,d , D,C,B,A ; } EIGHTbytes ;
Mark Jenkinson
committed
void Swap_8bytes( int n , void *ar ) /* 8 bytes at a time */
{
register int ii ;
register EIGHTbytes *tb = (EIGHTbytes *)ar ;
Mark Jenkinson
committed
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].A ; tb[ii].A = tt ;
tt = tb[ii].b ; tb[ii].b = tb[ii].B ; tb[ii].B = tt ;
tt = tb[ii].c ; tb[ii].c = tb[ii].C ; tb[ii].C = tt ;
tt = tb[ii].d ; tb[ii].d = tb[ii].D ; tb[ii].D = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
typedef struct { unsigned char a,b,c,d,e,f,g,h ,
H,G,F,E,D,C,B,A ; } SIXTEENbytes ;
Mark Jenkinson
committed
void Swap_16bytes( int n , void *ar ) /* 16 bytes at a time */
{
register int ii ;
register SIXTEENbytes *tb = (SIXTEENbytes *)ar ;
Mark Jenkinson
committed
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].A ; tb[ii].A = tt ;
tt = tb[ii].b ; tb[ii].b = tb[ii].B ; tb[ii].B = tt ;
tt = tb[ii].c ; tb[ii].c = tb[ii].C ; tb[ii].C = tt ;
tt = tb[ii].d ; tb[ii].d = tb[ii].D ; tb[ii].D = tt ;
tt = tb[ii].e ; tb[ii].e = tb[ii].E ; tb[ii].E = tt ;
tt = tb[ii].f ; tb[ii].f = tb[ii].F ; tb[ii].F = tt ;
tt = tb[ii].g ; tb[ii].g = tb[ii].G ; tb[ii].G = tt ;
tt = tb[ii].h ; tb[ii].h = tb[ii].H ; tb[ii].H = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
void Swap_Nbytes( int n , int siz , void *ar ) /* subsuming case */
{
switch( siz ){
case 2: Swap_2bytes ( n , ar ) ; break ;
case 4: Swap_4bytes ( n , ar ) ; break ;
case 8: Swap_8bytes ( n , ar ) ; break ;
case 16: Swap_16bytes( n , ar ) ; break ;
}
return ;
}
// end namespace MISCMATHS
}