Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pyfeeds-tests
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
pyfeeds-tests
Commits
d60c4822
Commit
d60c4822
authored
5 years ago
by
Michiel Cottaar
Browse files
Options
Downloads
Patches
Plain Diff
ENH: check --kurtdir, FA, mode, and MD
parent
eb103a10
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
unit_tests/fdt/dtifit/feedsRun
+140
-78
140 additions, 78 deletions
unit_tests/fdt/dtifit/feedsRun
with
140 additions
and
78 deletions
unit_tests/fdt/dtifit/feedsRun
+
140
−
78
View file @
d60c4822
...
@@ -18,7 +18,8 @@ def gen_data():
...
@@ -18,7 +18,8 @@ def gen_data():
:yield: directories containing reference noiseless data with the eigen-vectors and eigen-values used to generate the data
:yield: directories containing reference noiseless data with the eigen-vectors and eigen-values used to generate the data
"""
"""
directory = 'dti'
directory = [''] * 10
directory[0] = 'dti'
# eigen vectors vary along x-axis
# eigen vectors vary along x-axis
eigen_vectors = np.array([
eigen_vectors = np.array([
...
@@ -36,9 +37,9 @@ def gen_data():
...
@@ -36,9 +37,9 @@ def gen_data():
# eigen-values vary along y-axis
# eigen-values vary along y-axis
# eigen-values can not be the same or eigen-vectors will be ill-defined
# eigen-values can not be the same or eigen-vectors will be ill-defined
eigen_values = np.array([
eigen_values = np.array([
[1.2, 1., 0.
8
],
[1.2, 1., 0.
4
],
[1., 0.5, 0.],
[1., 0.5, 0.],
[
2., 1.9, 1.8
],
[
0.8, .6, .3
],
])[None, :, None, :, None] * 1e-3
])[None, :, None, :, None] * 1e-3
# S0 varies along the z-axis
# S0 varies along the z-axis
...
@@ -50,11 +51,11 @@ def gen_data():
...
@@ -50,11 +51,11 @@ def gen_data():
diffusion_tensor = (eigen_values[..., None] * eigen_vectors[..., None, :] * eigen_vectors[..., :, None]).sum(-3)
diffusion_tensor = (eigen_values[..., None] * eigen_vectors[..., None, :] * eigen_vectors[..., :, None]).sum(-3)
for multi_shell in (False, True): # we should get the same results for single or multi-shell data
for multi_shell in (False, True): # we should get the same results for single or multi-shell data
directory
+
= '
_
multi' if multi_shell else '
_
single'
directory
[1]
= 'multi' if multi_shell else 'single'
for kurt in (0,
):#
1, 2): # 0: no kurtosis; 1: single kurtosis; 2: parallel and perpendicular kurtosis
for kurt in (0, 1, 2): # 0: no kurtosis; 1: single kurtosis; 2: parallel and perpendicular kurtosis
if kurt != 0 and not multi_shell:
if kurt != 0 and not multi_shell:
continue
continue
directory
+
= ['', '
_
kurt', '
_
kurtdir'][kurt]
directory
[2]
= ['', 'kurt', 'kurtdir'][kurt]
bvals = np.full(50, 1000.)
bvals = np.full(50, 1000.)
if multi_shell:
if multi_shell:
...
@@ -66,93 +67,154 @@ def gen_data():
...
@@ -66,93 +67,154 @@ def gen_data():
assert bvecs.shape == (50, 3), f"GPS produced bvecs-file with shape {bvecs.shape} rather than the expected (50, 3)"
assert bvecs.shape == (50, 3), f"GPS produced bvecs-file with shape {bvecs.shape} rather than the expected (50, 3)"
testing.assert_allclose((bvecs ** 2).sum(-1), 1.)
testing.assert_allclose((bvecs ** 2).sum(-1), 1.)
kurt_val = np.array([
if kurt == 2:
[0, 0, 0.],
beig = bvals[:, None] * eigen_values[..., None, :, 0]
[1., 1., 1.],
beig[..., 0] -= 0.1 * (eigen_values[..., None, 0, 0] * bvals) ** 2 / 6
[1., 0.5, 0.5],
beig[..., 1:] -= 0.1 * (np.mean(eigen_values[..., None, 1:, 0], -1) * bvals)[..., None] ** 2 / 6
][kurt])
data = S0[..., None] * np.exp(np.sum(
data = S0[..., None] * np.exp(np.sum(
-beig *
-(bvals[:, None] * eigen_values[..., None, :, 0] +
np.sum(bvecs[:, None, :] * eigen_vectors[..., None, :, :], -1) ** 2, axis=-1
kurt_val * eigen_values[..., None, :, 0] ** 2 * bvals[:, None] ** 2) *
))
np.sum(bvecs[:, None, :] * eigen_vectors[..., None, :, :], -1) ** 2, axis=-1
else:
))
data = S0[..., None] * np.exp(np.sum(
-bvals[:, None] * eigen_values[..., None, :, 0] *
np.sum(bvecs[:, None, :] * eigen_vectors[..., None, :, :], -1) ** 2, axis=-1
)) * np.exp((0 if kurt == 0 else 0.1) * (np.mean(eigen_values[..., 0], -1)[..., None] * bvals) ** 2 / 6.)
if (data / S0[..., None]).min() < 0.01:
if (data / S0[..., None]).min() < 0.01:
raise ValueError("dtifit rounds attenuations below 0.01 up to 0.01, "
raise ValueError("dtifit rounds attenuations below 0.01 up to 0.01, "
"so these low values should not be in the test data")
"so these low values should not be in the test data")
for flipped in (False, True):
for flipped in (False, True):
if flipped:
directory[3] = 'flipped' if flipped else ''
directory += '_flipped'
fdir = '_'.join([d for d in directory if len(d) > 0])
if not os.path.isdir(dir
ectory
):
if not os.path.isdir(
f
dir):
os.mkdir(dir
ectory
)
os.mkdir(
f
dir)
if flipped:
if flipped:
np.savetxt(f'{dir
ectory
}/bvals', bvals[:, None])
np.savetxt(f'{
f
dir}/bvals', bvals[:, None])
np.savetxt(f'{dir
ectory
}/bvecs', bvecs.T)
np.savetxt(f'{
f
dir}/bvecs', bvecs.T)
else:
else:
np.savetxt(f'{dir
ectory
}/bvals', bvals[None, :])
np.savetxt(f'{
f
dir}/bvals', bvals[None, :])
np.savetxt(f'{dir
ectory
}/bvecs', bvecs)
np.savetxt(f'{
f
dir}/bvecs', bvecs)
affine = np.eye(4) * 1.25
affine = np.eye(4) * 1.25
affine[-1, -1] = 1.
affine[-1, -1] = 1.
for idx in range(3):
for idx in range(3):
nib.Nifti1Image(eigen_vectors[..., idx, :], affine=affine).to_filename(f'{directory}/ref_V{idx + 1}.nii.gz')
nib.Nifti1Image(eigen_vectors[..., idx, :], affine=affine).to_filename(f'{fdir}/ref_V{idx + 1}.nii.gz')
nib.Nifti1Image(eigen_values[..., idx, 0], affine=affine).to_filename(f'{directory}/ref_L{idx + 1}.nii.gz')
nib.Nifti1Image(eigen_values[..., idx, 0], affine=affine).to_filename(f'{fdir}/ref_L{idx + 1}.nii.gz')
nib.Nifti1Image(S0, affine=affine).to_filename(f'{directory}/ref_S0.nii.gz')
MD = eigen_values[..., 0].mean(-1)
nib.Nifti1Image(data, affine=affine).to_filename(f'{directory}/ref_data.nii.gz')
FA = np.sqrt(1.5 * ((eigen_values[..., 0] - MD[..., None]) ** 2).sum(-1) / (eigen_values[..., 0] ** 2).sum(-1))
nib.Nifti1Image(np.ones(data.shape[:3], dtype=int), affine=affine).to_filename(f'{directory}/nodif_brain_mask.nii.gz')
mode = 3 * np.sqrt(6) * np.prod(eigen_values[..., 0] - MD[..., None], -1) / ((eigen_values[..., 0] - MD[..., None]) ** 2).sum(-1) ** 1.5
print('mode', mode[0, :, 0])
nib.Nifti1Image(MD, affine=affine).to_filename(f'{fdir}/ref_MD.nii.gz')
nib.Nifti1Image(FA, affine=affine).to_filename(f'{fdir}/ref_FA.nii.gz')
nib.Nifti1Image(mode, affine=affine).to_filename(f'{fdir}/ref_MO.nii.gz')
nib.Nifti1Image(S0, affine=affine).to_filename(f'{fdir}/ref_S0.nii.gz')
nib.Nifti1Image(data, affine=affine).to_filename(f'{fdir}/ref_data.nii.gz')
nib.Nifti1Image(np.ones(data.shape[:3], dtype=int), affine=affine).to_filename(f'{fdir}/nodif_brain_mask.nii.gz')
tensor_components = diffusion_tensor[:, :, :, [0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]
tensor_components = diffusion_tensor[:, :, :, [0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]
nib.Nifti1Image(tensor_components, affine=affine).to_filename(f'{directory}/ref_tensor.nii.gz')
nib.Nifti1Image(tensor_components, affine=affine).to_filename(f'{fdir}/ref_tensor.nii.gz')
yield directory, kurt
yield fdir, multi_shell, kurt
def fit_data(directory, kurt=0):
def fit_data(directory):
for wls in (False, True): # in this noise-free data the --wls flag should not matter
for kurtdir in (False, True):
base_output = f'{directory}/dti{"_wls" if wls else ""}'
for main_kurt in (False, True):
cmd = [
for wls in (False, True): # in this noise-free data the --wls flag should not matter
'dtifit',
cmd = [
'-k', f'{directory}/ref_data.nii.gz',
'dtifit',
'-m', f'{directory}/nodif_brain_mask.nii.gz',
'-k', f'{directory}/ref_data.nii.gz',
'-r', f'{directory}/bvecs',
'-m', f'{directory}/nodif_brain_mask.nii.gz',
'-b', f'{directory}/bvals',
'-r', f'{directory}/bvecs',
'-o', base_output,
'-b', f'{directory}/bvals',
'--sse',
'--sse',
'--save_tensor',
'--save_tensor',
]
]
if wls:
base_output = f'{directory}/dti'
cmd += ['--wls']
if wls:
if kurt == 1:
cmd += ['--wls']
cmd += ['--kurt']
base_output += '_wls'
if kurt == 2:
if main_kurt:
cmd += ['--kurt']
cmd += ['--kurt']
run(cmd, check=True)
base_output += '_kurt'
yield base_output
if kurtdir:
cmd += ['--kurtdir']
base_output += '_kurtdir'
for directory, kurt in gen_data():
cmd.extend(['-o', base_output])
for base_output in fit_data(directory, kurt):
run(cmd, check=True)
def compare(name):
yield base_output, main_kurt, kurtdir
ref = nib.load(f'{directory}/ref_{name}.nii.gz').get_fdata()
fit = nib.load(f'{base_output}_{name}.nii.gz').get_fdata()
assert ref.shape == fit.shape, f'incorrect NIFTI image shape for {name}'
for directory, multi_shell, kurt in gen_data():
testing.assert_allclose(ref, fit, atol=1e-8,
for base_output, fkurt, fkurtdir in fit_data(directory):
err_msg=f'mismatch in {name}')
print(base_output)
if (
compare('S0')
(kurt == 0 and (multi_shell or not (fkurt or fkurtdir))) or
compare('tensor')
kurt == 1 and (fkurt or fkurtdir) or
for idx in (3, 2, 1):
kurt == 2 and fkurtdir
compare(f'L{idx}')
):
print('This fit should be valid')
ref = nib.load(f'{directory}/ref_V{idx}.nii.gz').get_fdata()
def compare(name):
fit = nib.load(f'{base_output}_V{idx}.nii.gz').get_fdata()
ref = nib.load(f'{directory}/ref_{name}.nii.gz').get_fdata()
assert ref.shape == fit.shape
fit = nib.load(f'{base_output}_{name}.nii.gz').get_fdata()
inner = (ref * fit).sum(-1)
assert ref.shape == fit.shape, f'incorrect NIFTI image shape for {name}'
testing.assert_allclose(abs(inner), 1.)
testing.assert_allclose(ref, fit, atol=1e-6,
err_msg=f'mismatch in {name}')
sse = nib.load(f'{base_output}_sse.nii.gz').get_fdata()
testing.assert_allclose(sse, 0., atol=1e-8)
for idx in (1, 2, 3):
compare(f'L{idx}')
ref = nib.load(f'{directory}/ref_V{idx}.nii.gz').get_fdata()
fit = nib.load(f'{base_output}_V{idx}.nii.gz').get_fdata()
assert ref.shape == fit.shape
inner = (ref * fit).sum(-1)
testing.assert_allclose(abs(inner), 1.)
compare('S0')
compare('FA')
compare('MO')
compare('MD')
compare('tensor')
sse = nib.load(f'{base_output}_sse.nii.gz').get_fdata()
testing.assert_allclose(sse, 0., atol=1e-8)
if fkurt:
kurt_fit = nib.load(f'{base_output}_kurt.nii.gz').get_fdata()
if kurt != 2:
testing.assert_allclose(kurt_fit, 0. if kurt == 0 else 0.1, rtol=1e-5, atol=1e-6)
else:
assert not os.path.isfile(f'{base_output}_kurt.nii.gz')
if fkurtdir:
kurt_para = nib.load(f'{base_output}_kurt_para.nii.gz').get_fdata()
kurt_perp = nib.load(f'{base_output}_kurt_perp.nii.gz').get_fdata()
if kurt == 0:
testing.assert_allclose(kurt_para, 0., atol=1e-5)
testing.assert_allclose(kurt_perp, 0., atol=1e-5)
elif kurt == 1:
# k_para and k_perp = 1 is different from MK=1...
assert not np.allclose(kurt, 0.1, rtol=0.01)
assert not np.allclose(kurt, 0.1, rtol=0.01)
elif kurt == 2:
testing.assert_allclose(kurt_para, 0.1, rtol=1e-5)
testing.assert_allclose(kurt_perp, 0.05, rtol=1e-5)
# for kurt == 1; kurt_para
else:
assert not os.path.isfile(f'{base_output}_kurt_para.nii.gz')
assert not os.path.isfile(f'{base_output}_kurt_perp.nii.gz')
else:
print('This fit should be invalid')
ref = nib.load(f'{directory}/ref_L1.nii.gz').get_fdata()
fit = nib.load(f'{base_output}_L1.nii.gz').get_fdata()
assert not np.allclose(ref, fit, rtol=0.01)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment