Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Numpy\n",
"\n",
"\n",
"This section introduces you to [`numpy`](http://www.numpy.org/), Python's\n",
"numerical computing library.\n",
"\n",
"\n",
"Numpy is not actually part of the standard Python library. But it is a\n",
"fundamental part of the Python ecosystem - it forms the basis for many\n",
"important Python libraries, and it (along with its partners\n",
"[`scipy`](https://www.scipy.org/), [`matplotlib`](https://matplotlib.org/) and\n",
"[`pandas`](https://pandas.pydata.org/)) is what makes Python an attractive\n",
"alternative to Matlab as a scientific computing platform.\n",
"The `fslpython` environment currently includes [Numpy\n",
"1.11.1](https://docs.scipy.org/doc/numpy-1.11.0/index.html), which is a little\n",
"out of date, but we will update it for the next release of FSL.\n",
"\n",
"\n",
"## Contents\n",
"\n",
"\n",
"* [The Python list versus the Numpy array](#the-python-list-versus-the-numpy-array)\n",
"* [Numpy basics](#numpy-basics)\n",
" * [Loading text files](#loading-text-files)\n",
" * [Array properties](#array-properties)\n",
" * [Descriptive statistics](#descriptive-statistics)\n",
" * [Reshaping and rearranging arrays](#reshaping-and-rearranging-arrays)\n",
"* [Operating on arrays](#operating-on-arrays)\n",
" * [Scalar operations](#scalar-operations)\n",
" * [Multi-variate operations](#multi-variate-operations)\n",
" * [Matrix multplication](#matrix-multiplication)\n",
" * [Broadcasting](#broadcasting)\n",
"* [Array indexing](#array-indexing)\n",
" * [Indexing multi-dimensional arrays](#indexing-multi-dimensional-arrays)\n",
" * [Boolean indexing](#boolean-indexing)\n",
" * [Coordinate array indexing](#coordinate-array-indexing)\n",
"* [Exercises](#exercises)\n",
" * [Load an array from a file and do stuff with it](#load-an-array-from-a-file-and-do-stuff-with-it)\n",
" * [Concatenate affine transforms](#concatenate-affine-transforms)\n",
"* [Appendix A: Generating random numbers](#appendix-generating-random-numbers)\n",
"* [Appendix B: Importing Numpy](#appendix-importing-numpy)\n",
"* [Appendix C: Vectors in Numpy](#appendix-vectors-in-numpy)\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"the-python-list-versus-the-numpy-array\"></a>\n",
"## The Python list versus the Numpy array\n",
"\n",
"\n",
"Numpy adds a new data type to the Python language - the `array` (more\n",
"specifically, the `ndarray`). A Numpy `array` is a N-dimensional array of\n",
"homogeneously-typed numerical data.\n",
"\n",
"\n",
"You have already been introduced to the Python `list`, which you can easily\n",
"use to store a handful of numbers (or anything else):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = [10, 8, 12, 14, 7, 6, 11]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You could also emulate a 2D or ND matrix by using lists of lists, for example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xyz_coords = [[-11.4, 1.0, 22.6],\n",
" [ 22.7, -32.8, 19.1],\n",
" [ 62.8, -18.2, -34.5]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For simple tasks, you could stick with processing your data using python\n",
"lists, and the built-in\n",
"[`math`](https://docs.python.org/3.5/library/math.html) library. And this\n",
"might be tempting, because it does look quite a lot like what you might type\n",
"into Matlab.\n",
"\n",
"\n",
"But __BEWARE!__ A Python list is a terrible data structure for scientific\n",
"computing!\n",
"\n",
"\n",
"This is a major source of confusion for people who are learning Python, and\n",
"are trying to write efficient code. It is _crucial_ to be able to distinguish\n",
"between a Python list and a Numpy array.\n",
"___Python list == Matlab cell array:___ A list in Python is akin to a cell\n",
"array in Matlab - they can store anything, but are extremely inefficient, and\n",
"unwieldy when you have more than a couple of dimensions.\n",
"___Numy array == Matlab matrix:___ These are in contrast to the Numpy array\n",
"and Matlab matrix, which are both thin wrappers around a contiguous chunk of\n",
"memory, and which provide blazing-fast performance (because behind the scenes\n",
"in both Numpy and Matlab, it's C, C++ and FORTRAN all the way down).\n",
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"\n",
"\n",
"So you should strongly consider turning those lists into Numpy arrays:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"data = np.array([10, 8, 12, 14, 7, 6, 11])\n",
"\n",
"xyz_coords = np.array([[-11.4, 1.0, 22.6],\n",
" [ 22.7, -32.8, 19.1],\n",
" [ 62.8, -18.2, -34.5]])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you look carefully at the code above, you will notice that we are still\n",
"actually using Python lists. We have declared our data sets in exactly the\n",
"same way as we did earlier, by denoting them with square brackets `[` and `]`.\n",
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"\n",
"\n",
"The key difference here is that these lists immediately get converted into\n",
"Numpy arrays, by passing them to the `np.array` function. To clarify this\n",
"point, we could rewrite this code in the following equivalent manner:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"# Define our data sets as python lists\n",
"data = [10, 8, 12, 14, 7, 6, 11]\n",
"xyz_coords = [[-11.4, 1.0, 22.6],\n",
" [ 22.7, -32.8, 19.1],\n",
" [ 62.8, -18.2, -34.5]]\n",
"\n",
"# Convert them to numpy arrays\n",
"data = np.array(data)\n",
"xyz_coords = np.array(xyz_coords)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"Of course, in practice, we would never create a Numpy array in this way - we\n",
"will be loading our data from text or binary files directly into a Numpy\n",
"array, thus completely bypassing the use of Python lists and the costly\n",
"list-to-array conversion. I'm emphasising this to help you understand the\n",
"difference between Python lists and Numpy arrays. Apologies if you've already\n",
"got it, forgiveness please.\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"numpy-basics\"></a>\n",
"## Numpy basics\n",
"\n",
"\n",
"Let's get started."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"creating-arrays\"></a>\n",
"### Creating arrays\n",
"\n",
"\n",
"Numpy has quite a few functions which behave similarly to their equivalents in\n",
"Matlab:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('np.zeros gives us zeros: ', np.zeros(5))\n",
"print('np.ones gives us ones: ', np.ones(5))\n",
"print('np.arange gives us a range: ', np.arange(5))\n",
"print('np.linspace gives us N linearly spaced numbers:', np.linspace(0, 1, 5))\n",
"print('np.random.random gives us random numbers [0-1]:', np.random.random(5))\n",
"print('np.random.randint gives us random integers: ', np.random.randint(1, 10, 5))\n",
"print('np.eye gives us an identity matrix:')\n",
"print(np.eye(4))\n",
"print('np.diag gives us a diagonal matrix:')\n",
"print(np.diag([1, 2, 3, 4]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> See the [appendix](#appendix-generating-random-numbers) for more information\n",
"> on generating random numbers in Numpy.\n",
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"\n",
"\n",
"The `zeros` and `ones` functions can also be used to generate N-dimensional\n",
"arrays:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"z = np.zeros((3, 4))\n",
"o = np.ones((2, 10))\n",
"print(z)\n",
"print(o)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Note that, in a 2D Numpy array, the first axis corresponds to rows, and the\n",
"> second to columns - just like in Matlab.\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"loading-text-files\"></a>\n",
"### Loading text files\n",
"The `numpy.loadtxt` function is capable of loading numerical data from\n",
"plain-text files. By default it expects space-separated data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"data = np.loadtxt('04_numpy/space_separated.txt')\n",
"print('data in 04_numpy/space_separated.txt:')\n",
"print(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But you can also specify the delimiter to expect<sup>1</sup>:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = np.loadtxt('04_numpy/comma_separated.txt', delimiter=',')\n",
"print('data in 04_numpy/comma_separated.txt:')\n",
"print(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> <sup>1</sup> And many other things such as file headers, footers, comments,\n",
"> and newline characters - see the\n",
"> [docs](https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html)\n",
"> for more information.\n",
"\n",
"\n",
" Of course you can also save data out to a text file just as easily, with\n",
"[`numpy.savetxt`](https://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = np.random.randint(1, 10, (10, 10))\n",
"np.savetxt('mydata.txt', data, delimiter=',', fmt='%i')\n",
"\n",
"with open('mydata.txt', 'rt') as f:\n",
" for line in f:\n",
" print(line.strip())"
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"array-properties\"></a>\n",
"### Array properties\n",
"\n",
"\n",
"Numpy is a bit different than Matlab in the way that you interact with\n",
"arrays. In Matlab, you would typically pass an array to a built-in function,\n",
"e.g. `size(M)`, `ndims(M)`, etc. In contrast, a Numpy array is a Python\n",
"object which has _attributes_ that contain basic information about the array:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"z = np.zeros((2, 3, 4))\n",
"print(z)\n",
"print('Shape: ', z.shape)\n",
"print('Number of dimensions: ', z.ndim)\n",
"print('Number of elements: ', z.size)\n",
"print('Data type: ', z.dtype)\n",
"print('Number of bytes: ', z.nbytes)\n",
"print('Length of first dimension: ', len(z))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> As depicted above, passing a Numpy array to the built-in `len` function will\n",
"> only give you the length of the first dimension, so you will typically want\n",
"> to avoid using it - use the `size` attribute instead.\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"descriptive-statistics\"></a>\n",
"### Descriptive statistics\n",
"\n",
"\n",
"Similarly, a Numpy array has a set of methods<sup>2</sup> which allow you to\n",
"calculate basic descriptive statistics on an array:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.random.random(10)\n",
"print('a: ', a)\n",
"print('min: ', a.min())\n",
"print('max: ', a.max())\n",
"print('index of min: ', a.argmin()) # remember that in Python, list indices\n",
"print('index of max: ', a.argmax()) # start from zero - Numpy is the same!\n",
"print('mean: ', a.mean())\n",
"print('variance: ', a.var())\n",
"print('stddev: ', a.std())\n",
"print('sum: ', a.sum())\n",
"print('prod: ', a.prod())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> <sup>2</sup> Python, being an object-oriented language, distinguishes\n",
"> between _functions_ and _methods_. Hopefully we all know what a function is\n",
"> - a _method_ is simply the term used to refer to a function that is\n",
"> associated with a specific object. Similarly, the term _attribute_ is used\n",
"> to refer to some piece of information that is attached to an object, such as\n",
"> `z.shape`, or `z.dtype`.\n",
"<a class=\"anchor\" id=\"reshaping-and-rearranging-arrays\"></a>\n",
"### Reshaping and rearranging arrays\n",
"\n",
"\n",
"A numpy array can be reshaped very easily, using the `reshape` method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
"b = a.reshape((2, 8))\n",
"print('a:')\n",
"print(a)\n",
"print('b:')\n",
"print(b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that this does not modify the underlying data in any way - the `reshape`\n",
"method returns a _view_ of the same array, just indexed differently:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a[3, 3] = 12345\n",
"b[0, 7] = 54321\n",
"print('a:')\n",
"print(a)\n",
"print('b:')\n",
"print(b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you need to create a reshaped copy of an array, use the `np.array`\n",
"function:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b = np.array(a.reshape(2, 8))\n",
"a[3, 3] = 12345\n",
"b[0, 7] = 54321\n",
"print('a:')\n",
"print(a)\n",
"print('b:')\n",
"print(b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `T` attribute is a shortcut to obtain the transpose of an array."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(a)\n",
"print(a.T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `transpose` method allows you to obtain more complicated rearrangements\n",
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
"b = a.transpose((2, 0, 1))\n",
"print('a: ', a.shape)\n",
"print(a)\n",
"print('b:', b.shape)\n",
"print(b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Note again that the `T` attribute and `transpose` method return _views_ of\n",
"> your array.\n",
"\n",
"\n",
"Numpy has some useful functions which allow you to concatenate or stack\n",
"multiple arrays into one. The `concatenate` function does what it says on the\n",
"tin:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.zeros(3)\n",
"b = np.ones(3)\n",
"\n",
"print('1D concatenation:', np.concatenate((a, b)))\n",
"\n",
"a = np.zeros((3, 3))\n",
"b = np.ones((3, 3))\n",
"\n",
"print('2D column-wise concatenation:')\n",
"print(np.concatenate((a, b), axis=1))\n",
"\n",
"print('2D row-wise concatenation:')\n",
"\n",
"# The axis parameter defaults to 0,\n",
"# so it is not strictly necessary here.\n",
"print(np.concatenate((a, b), axis=0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `hstack`, `vstack` and `dstack` functions allow you to concatenate vectors\n",
"or arrays along the first, second, or third dimension respectively:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.zeros(3)\n",
"b = np.ones(3)\n",
"\n",
"print('a: ', a)\n",
"print('b: ', b)\n",
"\n",
"hstacked = np.hstack((a, b))\n",
"vstacked = np.vstack((a, b))\n",
"dstacked = np.dstack((a, b))\n",
"\n",
"print('hstacked: (shape {}):'.format(hstacked.shape))\n",
"print( hstacked)\n",
"print('vstacked: (shape {}):'.format(vstacked.shape))\n",
"print( vstacked)\n",
"print('dstacked: (shape {}):'.format(dstacked.shape))\n",
"print( dstacked)"
]
},
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"operating-on-arrays\"></a>\n",
"## Operating on arrays\n",
"\n",
"\n",
"If you are coming from Matlab, you should read this section as, while many\n",
"Numpy operations behave similarly to Matlab, there are a few important\n",
"behaviours which differ from what you might expect.\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"scalar-operations\"></a>\n",
"### Scalar operations\n",
"\n",
"\n",
"All of the mathematical operators you know and love can be applied to Numpy\n",
"arrays:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.arange(1, 10).reshape((3, 3))\n",
"print('a:')\n",
"print(a)\n",
"print('a + 2:')\n",
"print( a + 2)\n",
"print('a * 3:')\n",
"print( a * 3)\n",
"print('a % 2:')\n",
"print( a % 2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"multi-variate-operations\"></a>\n",
"Many operations in Numpy operate on an element-wise basis. For example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.ones(5)\n",
"b = np.random.randint(1, 10, 5)\n",
"\n",
"print('a: ', a)\n",
"print('b: ', b)\n",
"print('a + b: ', a + b)\n",
"print('a * b: ', a * b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This also extends to higher dimensional arrays:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.ones((4, 4))\n",
"b = np.arange(16).reshape((4, 4))\n",
"\n",
"print('a:')\n",
"print(a)\n",
"print('b:')\n",
"print(b)\n",
"\n",
"print('a + b')\n",
"print(a + b)\n",
"print('a * b')\n",
"print(a * b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wait ... what's that you say? Oh, I couldn't understand because of all the\n",
"froth coming out of your mouth. I guess you're angry that `a * b` didn't give\n",
"you the matrix product, like it would have in Matlab. Well all I can say is\n",
"that Numpy is not Matlab. Matlab operations are typically consistent with\n",
"linear algebra notation. This is not the case in Numpy. Get over it. Take a\n",
"calmative.\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"matrix-multiplication\"></a>\n",
"\n",
"\n",
"When your heart rate has returned to its normal caffeine-induced state, you\n",
"can use the `@` operator or the `dot` method, to perform matrix\n",
"multiplication:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.arange(1, 5).reshape((2, 2))\n",
"b = a.T\n",
"\n",
"print('a:')\n",
"print(a)\n",
"print('b:')\n",
"print(b)\n",
"\n",
"print('a @ b')\n",
"print(a @ b)\n",
"\n",
"print('a.dot(b)')\n",
"print(a.dot(b))\n",
"\n",
"print('b.dot(a)')\n",
"print(b.dot(a))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> The `@` matrix multiplication operator is a relatively recent addition to\n",
"> Python and Numpy, so you might not see it all that often in existing\n",
"> code. But it's here to stay, so if you don't need to worry about\n",
"> backwards-compatibility, go ahead and use it!\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"broadcasting\"></a>\n",
"### Broadcasting\n",
"\n",
"\n",
"One of the coolest features of Numpy is _broadcasting_<sup>3</sup>.\n",
"Broadcasting allows you to perform element-wise operations on arrays which\n",
"have a different shape. For each axis in the two arrays, Numpy will implicitly\n",
"expand the shape of the smaller axis to match the shape of the larger one. You\n",
"never need to use `repmat` ever again!\n",
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
"> <sup>3</sup>Mathworks have shamelessly stolen Numpy's broadcasting behaviour\n",
"> and included it in Matlab versions from 2016b onwards, referring to it as\n",
"> _implicit expansion_.\n",
"\n",
"\n",
"Broadcasting allows you to, for example, add the elements of a 1D vector to\n",
"all of the rows or columns of a 2D array:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.arange(9).reshape((3, 3))\n",
"b = np.arange(1, 4)\n",
"print('a:')\n",
"print(a)\n",
"print('b: ', b)\n",
"print('a * b (row-wise broadcasting):')\n",
"print(a * b)\n",
"print('a * b.T (column-wise broadcasting):')\n",
"print(a * b.reshape(-1, 1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Here we used a handy feature of the `reshape` method - if you pass `-1` for\n",
"> the size of one dimension, it will automatically determine the size to use\n",
"> for that dimension. Take a look at [the\n",
"> appendix](#appendix-vectors-in-numpy) for a discussion on vectors in Numpy.\n",
"\n",
"\n",
"Here is a more useful example, where we use broadcasting to de-mean the rows\n",
"or columns of an array:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = np.arange(9).reshape((3, 3))\n",
"print('a:')\n",
"print(a)\n",
"\n",
"print('a (cols demeaned):')\n",
"print(a - a.mean(axis=0))\n",
"\n",
"print('a (rows demeaned):')\n",
"print(a - a.mean(axis=1).reshape(-1, 1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> As demonstrated above, many functions in Numpy accept an `axis` parameter,\n",
"> allowing you to apply the function along a specific axis. Omitting the\n",
"> `axis` parameter will apply the function to the whole array.\n",
"\n",
"\n",
"Broadcasting can sometimes be confusing, but the rules which Numpy follows to\n",
"align arrays of different sizes, and hence determine how the broadcasting\n",
"should be applied, are pretty straightforward. If something is not working,\n",
"and you can't figure out why refer to the [official\n",
"documentation](https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).\n",
"\n",
"\n",
"<a class=\"anchor\" id=\"linear-algebra\"></a>\n",
"### Linear algebra\n",
"\n",
"\n",
"Numpy is first and foremost a library for general-purpose numerical computing.\n",
"But it does have a range of linear algebra functionality, hidden away in the\n",
"[`numpy.linalg`](https://docs.scipy.org/doc/numpy/reference/routines.linalg.html)\n",
"module. Here are a couple of quick examples:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy.linalg as npla\n",
"\n",
"a = np.array([[1, 2, 3, 4],\n",
" [0, 5, 6, 7],\n",
" [0, 0, 8, 9],\n",
" [0, 0, 0, 10]])\n",
"print('inv(a)')\n",
"print(npla.inv(a))\n",
"print('eigenvalues and vectors of a:')\n",
"for val, vec in zip(eigvals, eigvecs):\n",
" print('{:2.0f} - {}'.format(val, vec))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"array-indexing\"></a>\n",
"## Array indexing\n",
"\n",
"\n",
"Just like in Matlab, slicing up your arrays is a breeze in Numpy. If you are\n",
"after some light reading, you might want to check out the [comprehensive Numpy\n",
"Indexing\n",
"reference](https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html).\n",
"\n",
"\n",
"> As with indexing regular Python lists, array indices start from 0, and end\n",
"> indices (if specified) are exclusive.\n",
"\n",
"\n",
"Let's whet our appetites with some basic 1D array slicing. Numpy supports the\n",
"standard Python\n",
"[__slice__](https://www.pythoncentral.io/how-to-slice-listsarrays-and-tuples-in-python/)\n",
"notation for indexing, where you can specify the start and end indices, and\n",
"the step size, via the `start:stop:step` syntax:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"print('a: ', a)\n",
"print('first element: ', a[0])\n",
"print('first two elements: ', a[:2])\n",
"print('last element: ', a[a.shape[0] - 1])\n",
"print('last element again: ', a[-1])\n",
"print('last two elements: ', a[-2:])\n",
"print('middle four elements: ', a[3:7])\n",
"print('Every second element: ', a[1::2])\n",
"print('Every second element, reversed: ', a[-1::-2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that slicing an array in this way returns a _view_, not a copy, into that\n",
"array:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('a:', a)\n",
"every2nd = a[::2]\n",
"print('every 2nd:', every2nd)\n",
"every2nd += 10\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"indexing-multi-dimensional-arrays\"></a>\n",
"### Indexing multi-dimensional arrays\n",
"\n",
"\n",
"Multi-dimensional array indexing works in much the same way as one-dimensional\n",
"indexing but with, well, more dimensions. Use commas within the square\n",
"brackets to separate the slices for each dimension:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('a:')\n",
"print(a)\n",
"print(' First row: ', a[ 0, :])\n",
"print(' Last row: ', a[ -1, :])\n",
"print(' second column: ', a[ :, 1])\n",
"print(' Centre:')\n",
"print(a[1:4, 1:4])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For arrays with more than two dimensions, the ellipsis (`...`) is a handy\n",
"feature - it allows you to specify a slice comprising all elements along\n",
"more than one dimension:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
"print('a:')\n",
"print(a)\n",
"print('All elements at x=0:')\n",
"print(a[0, ...])\n",
"print('All elements at z=2:')\n",
"print(a[..., 2])\n",
"print('All elements at x=0, z=2:')\n",
"print(a[0, ..., 2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a class=\"anchor\" id=\"boolean-indexing\"></a>\n",
"### Boolean indexing\n",
"\n",
"\n",
"A numpy array can be indexed with a boolean array of the same shape. For\n",
"example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"print('a: ', a)\n",
"print('a > 5: ', a > 4)\n",
"print('elements in a that are > 5: ', a[a > 5])"
]
},