Skip to content
Snippets Groups Projects
09_pandas.ipynb 37.6 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Pandas"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Pandas is a data analysis library focussed on the cleaning and exploration of tabular data.\n",
    "\n",
    "Some useful links are:\n",
    "- [main website](https://pandas.pydata.org)\n",
    "- [documentation](http://pandas.pydata.org/pandas-docs/stable/)<sup>1</sup>\n",
    "- [Python Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/)<sup>1</sup> by Jake van der Plas\n",
    "\n",
    "<sup>1</sup> This tutorial borrows heavily from the pandas documentation and the Python Data Science Handbook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pylab inline\n",
    "import pandas as pd  # pd is the usual abbreviation for pandas\n",
    "import seaborn as sns  # seaborn is the main plotting library for Pandas\n",
    "import statsmodels.api as sm  # statsmodels fits linear models to pandas data\n",
    "import statsmodels.formula.api as smf\n",
    "from IPython.display import Image\n",
    "sns.set()  # use the prettier seaborn plotting settings rather than the default matplotlib one"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Loading in data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Pandas supports a wide range of I/O tools to load from text files, binary files, and SQL databases. You can find a table with all formats [here](http://pandas.pydata.org/pandas-docs/stable/io.html)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/titanic.csv')\n",
    "titanic"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This loads the data into a [DataFrame](https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.DataFrame.html) object, which is the main object we will be interacting with in pandas. It represents a table of data.\n",
    "\n",
    "The other file formats all start with `pd.read_{format}`.  Note that we can provide the URL to the dataset, rather than download it beforehand.\n",
    "\n",
    "We can write out the dataset using `dataframe.to_{format}(<filename)`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.to_csv('titanic_copy.csv', index=False)  # we set index to False to prevent pandas from storing the row names"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you can not connect to the internet, you can run the command below to load this locally stored titanic dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "titanic = pd.read_csv('09_pandas/titanic.csv')\n",
    "titanic"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the titanic dataset was also available to us as one of the standard datasets included with seaborn. We could load it from there using"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.load_dataset('titanic')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Dataframes can also be created from other python objects, using pd.DataFrame.from_{other type}. The most useful of these is from_dict, which converts a mapping of the columns to a pandas DataFrame (i.e., table).\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "pd.DataFrame.from_dict({\n",
    "    'random numbers': np.random.rand(5),\n",
    "    'sequence (int)': np.arange(5),\n",
    "    'sequence (float)': np.linspace(0, 5, 5),\n",
    "    'letters': list('abcde'),\n",
    "    'constant_value': 'same_value'\n",
    "})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For many applications (e.g., ICA, machine learning input) you might want to extract your data as a numpy array. The underlying numpy array can be accessed using the `values` attribute"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.values"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the type of the returned array is the most common type (in this case object). If you just want the numeric parts of the table you can use `select_dtype`, which selects specific columns based on their dtype:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.select_dtypes(include=np.number).values"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the numpy array has no information on the column names or row indices.\n",
    "\n",
    "Alternatively, when you want to include the categorical variables in your later analysis (e.g., for machine learning), you can extract dummy variables using: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "pd.get_dummies(titanic)"
   ]
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Accessing parts of the data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[Documentation on indexing](http://pandas.pydata.org/pandas-docs/stable/indexing.html)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting columns by name"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Single columns can be selected using the normal python indexing:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic['embark_town']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If the column names are simple strings (not required) we can also access it directly as an attribute"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.embark_town"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that this returns a pandas [Series](https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Series.html) rather than a DataFrame object. A Series is simply a 1-dimensional array representing a single column.\n",
    "\n",
    "Multiple columns can be returned by providing a list of columns names. This will return a DataFrame:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[['class', 'alive']]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that you have to provide a list here (square brackets). If you provide a tuple (round brackets) pandas will think you are trying to access a single column that has that tuple as a name:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[('class', 'alive')]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this case there is no column called ('class', 'alive') leading to an error. Later on we will see some uses to having columns named like this."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Indexing rows by name or integer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Individual rows can be accessed based on their name (i.e., the index) or integer (i.e., which row it is in). In our current table this will give the same results. To ensure that these are different, let's sort our titanic dataset based on the passenger fare:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted = titanic.sort_values('fare')\n",
    "titanic_sorted"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the re-sorting did not change the values in the index (i.e., left-most column).\n",
    "\n",
    "We can select the first row of this newly sorted table using iloc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.iloc[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can select the row with the index 0 using"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.loc[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that this gives the same passenger as the first row of the initial table before sorting"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.iloc[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another common way to access the first or last N rows of a table is using the head/tail methods"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.head(3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.tail(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that nearly all methods in pandas return a new Dataframe, which means that we can easily call another method on them"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.tail(10).head(5)  # select the first 5 of the last 10 passengers in the database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.iloc[-10:-5]  # alternative way to get the same passengers"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: use sorting and tail/head or indexing to find the 10 youngest passengers on the titanic. Try to do this on a single line by chaining calls to the titanic dataframe object"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.sort_values..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Indexing rows by value"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One final way to select specific columns is by their value"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[titanic.sex == 'female']  # selects all females"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# select all passengers older than 60 who departed from Southampton\n",
    "titanic[(titanic.age > 60) & (titanic['embark_town'] == 'Southampton')]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that this required typing \"titanic\" quite often. A quicker way to get the same result is using the `query` method, which is described in detail [here](http://pandas.pydata.org/pandas-docs/stable/indexing.html#the-query-method) (note that using the `query` method is also faster and uses a lot less memory).\n",
    "\n",
    "> You may have trouble using the query method with columns which have a name that cannot be used as a Python identifier."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.query('(age > 60) & (embark_town == \"Southampton\")')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Particularly useful when selecting data like this is the `isna` method which finds all missing data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[~titanic.age.isna()]  # select first few passengers whose age is not N/A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This removing of missing numbers is so common that it has is own method"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.dropna()  # drops all passengers that have some datapoint missing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.dropna(subset=['age', 'fare'])  # Only drop passengers with missing ages or fares"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: use sorting, indexing by value, dropna and tail/head or indexing to find the 10 oldest female passengers on the titanic. Try to do this on a single line by chaining calls to the titanic dataframe object"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Plotting the data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before we start analyzing the data, let's play around with visualizing it. \n",
    "\n",
    "Pandas does have some basic built-in plotting options:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.fare.hist(bins=20, log=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.age.plot()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Individual columns are essentially 1D arrays, so we can use them as such in matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "plt.scatter(titanic.age, titanic.fare)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "However, for most purposes much nicer plots can be obtained using [Seaborn](https://seaborn.pydata.org). Seaborn has support to produce plots showing the [univariate](https://seaborn.pydata.org/tutorial/distributions.html#plotting-univariate-distributions) or [bivariate](https://seaborn.pydata.org/tutorial/distributions.html#plotting-bivariate-distributions) distribution of data in a single or a grid of plots.\n",
    "\n",
    "Most of the seaborn plotting functions expect to get a pandas dataframe (although they will work with Numpy arrays as well). So we can plot age vs. fare like:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.jointplot('age', 'fare', data=titanic)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: check the documentation from `sns.jointplot` (hover the mouse over the text \"jointplot\" and press shift-tab) to find out how to turn the scatter plot into a density (kde) map"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.jointplot('age', 'fare', data=titanic, ...)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is just a brief example of how we can use multiple columns to illustrate the data in more detail"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.relplot(x='age', y='fare', col='class', hue='sex', data=titanic,\n",
    "           col_order=('First', 'Second', 'Third'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: Split the plot above into two rows with the first row including the passengers who survived and the second row those who did not (you might have to check the documentation again by using shift-tab while overing the mouse over `relplot`) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.relplot(x='age', y='fare', col='class', hue='sex', data=titanic,\n",
    "           col_order=('First', 'Second', 'Third')...)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One of the nice thing of Seaborn is how easy it is to update how these plots look. You can read more about that [here](https://seaborn.pydata.org/tutorial/aesthetics.html). For example, to increase the font size to get a plot more approriate for a talk, you can use:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.set_context('talk')\n",
    "sns.violinplot(x='class', y='age', hue='sex', data=titanic, split=True, \n",
    "               order=('First', 'Second', 'Third'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Summarizing the data (mean, std, etc.)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There are a large number of built-in methods to summarize the observations in a Pandas dataframe. Most of these will return a Series with the columns names as index:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.quantile(0.75)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One very useful one is `describe`, which gives an overview of many common summary measures"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that non-numeric columns are ignored when summarizing data in this way.\n",
    "\n",
    "We can also define our own functions to apply to the columns (in this case we have to explicitly set the data types)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def mad(series):\n",
    "    \"\"\"\n",
    "    Computes the median absolute deviatation (MAD)\n",
    "    \n",
    "    This is a outlier-resistant measure of the standard deviation\n",
    "    \"\"\"\n",
    "    no_nan = series.dropna()\n",
    "    return np.median(abs(no_nan - np.nanmedian(no_nan)))\n",
    "\n",
    "titanic.select_dtypes(np.number).apply(mad)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also provide multiple functions to the `apply` method (note that functions can be provided as strings)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.select_dtypes(np.number).apply(['mean', np.median, np.std, mad])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Grouping by"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One of the more powerful features of is `groupby`, which splits the dataset on a categorical variable. The book contains a clear tutorial on that feature [here](https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html). You can check the pandas documentation [here](http://pandas.pydata.org/pandas-docs/stable/groupby.html) for a more formal introduction. One simple use is just to put it into a loop"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "for cls, part_table in titanic.groupby('class'):\n",
    "    print(f'Mean fare in {cls.lower()} class: {part_table.fare.mean()}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "However, it is more often combined with one of the aggregation functions discussed above as illustrated in this figure from the [Python data science handbook](https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html#Split-Apply-Combine)\n",
    "\n",
    "![group by image](09_pandas/group_by.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby('class').mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also group by multiple variables at once"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'survived']).mean()  # as always in pandas supply multiple column names as lists, not tuples"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "When grouping it can help to use the `cut` method to split a continuous variable into a categorical one"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', pd.cut(titanic.age, bins=(0, 18, 50, np.inf))]).mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use the `aggregate` method to apply a different function to each series"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'survived']).aggregate((np.median, mad))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that both the index (on the left) and the column names (on the top) now have multiple levels. Such a multi-level index is referred to as `MultiIndex`. This does complicate selecting specific columns/rows. You can read more of using `MultiIndex` [here](http://pandas.pydata.org/pandas-docs/stable/advanced.html).\n",
    "\n",
    "The short version is that columns can be selected using direct indexing (as discussed above)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full = titanic.groupby(['class', 'survived']).aggregate((np.median, mad))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full[('age', 'median')]  # selects median age column; note that the round brackets are optional"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full['age']  # selects both age columns"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Remember that indexing based on the index was done through `loc`. The rest is the same as for the columns above"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.loc[('First', 0)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.loc['First']\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "More advanced use of the `MultiIndex` is possible through `xs`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.xs(0, level='survived') # selects all the zero's from the survived index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.xs('mad', axis=1, level=1) # selects mad from the second level in the columns (i.e., axis=1) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Reshaping tables"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If we were interested in how the survival rate depends on the class and sex of the passengers we could simply use a groupby:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'sex']).survived.mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "However, this single-column table is difficult to read. The reason for this is that the indexing is multi-leveled (called `MultiIndex` in pandas), while there is only a single column. We would like to move one of the levels in the index to the columns. This can be done using `stack`/`unstack`:\n",
    "- `unstack`: Moves one levels in the index to the columns\n",
    "- `stack`: Moves one of levels in the columns to the index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'sex']).survived.mean().unstack('sex')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The former table, where the different groups are defined in different rows, is often referred to as long-form. After unstacking the table is often referred to as wide-form as the different group (sex in this case) is now represented as different columns. In pandas some operations are easier on long-form tables (e.g., `groupby`) while others require wide_form tables (e.g., making scatter plots of two variables). You can go back and forth using `unstack` or `stack` as illustrated above, but as this is a crucial part of pandas there are many alternatives, such as `pivot_table`, `melt`, and `wide_to_long`, which we will discuss below.\n",
    "\n",
    "We can prettify the table further using seaborn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "ax = sns.heatmap(titanic.groupby(['class', 'sex']).survived.mean().unstack('sex'), \n",
    "                 annot=True)\n",
    "ax.set_title('survival rate')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that there are also many ways to produce prettier tables in pandas (e.g., color all the negative values). This is documented [here](http://pandas.pydata.org/pandas-docs/stable/style.html)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Because this stacking/unstacking is fairly common after a groupby operation, there is a shortcut for it: `pivot_table`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.pivot_table('survived', 'class', 'sex')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As usual in pandas, where we can also provide multiple column names"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.heatmap(titanic.pivot_table('survived', ['class', 'embark_town'], ['sex', pd.cut(titanic.age, (0, 18, np.inf))]), annot=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also change the function to be used to aggregate the data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.heatmap(titanic.pivot_table('survived', ['class', 'embark_town'], ['sex', pd.cut(titanic.age, (0, 18, np.inf))], \n",
    "                                aggfunc='count'), annot=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As in `groupby` the aggregation function can be a string of a common aggregation function, or any function that should be applied.\n",
    "\n",
    "We can even apply different aggregate functions to different columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.pivot_table(index='class', columns='sex',  \n",
    "                    aggfunc={'survived': 'count', 'fare': np.mean}) # compute number of survivors and mean fare\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The opposite of `pivot_table` is `melt`. This can be used to change a wide-form table into a long-form table. This is not particularly useful on the titanic dataset, so let's create a new table where this might be useful. Let's say we have a dataset listing the FA and MD values in various WM tracts:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "tracts = ('Corpus callosum', 'Internal capsule', 'SLF', 'Arcuate fasciculus')\n",
    "df_wide = pd.DataFrame.from_dict(dict({'subject': list('ABCDEFGHIJ')}, **{\n",
    "    f'FA({tract})': np.random.rand(10) for tract in tracts }, **{\n",
    "    f'MD({tract})': np.random.rand(10) * 1e-3 for tract in tracts\n",
    "}))\n",
    "df_wide"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This wide-form table (i.e., all the information is in different columns) makes it hard to select just all the FA values or only the values associated with the SLF. For this it would be easier to lismt all the values in a single column. Most of the tools discussed above (e.g., `group_by` or `seaborn` plotting) work better with long-form data, which we can obtain from `melt`: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_long = df_wide.melt('subject', var_name='measurement', value_name='dti_value')\n",
    "df_long.head(12)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can see that `melt` took all the columns (we could also have specified a specific sub-set) and returned each measurement as a seperate row. We probably want to seperate the measurement column into the measurement type (FA or MD) and the tract name. Many string manipulation function are available in the `DataFrame` object under `DataFrame.str` ([tutorial](http://pandas.pydata.org/pandas-docs/stable/text.html))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_long['variable'] = df_long.measurement.str.slice(0, 2)  # first two letters correspond to FA or MD\n",
    "df_long['tract'] = df_long.measurement.str.slice(3, -1)  # fourth till the second-to-last letter correspond to the tract\n",
    "df_long.head(12)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally we probably do want the FA and MD variables as different columns. \n",
    "\n",
    "*Exercise*: Use `pivot_table` or `stack`/`unstack` to create a column for MD and FA."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_unstacked = df_long."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can now use the tools discussed above to visualize the table (`seaborn`) or to group the table based on tract (`groupby` or `pivot_table`)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# feel free to analyze this random data in more detail"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In general pandas is better at handling long-form than wide-form data, although for better visualization of the data an intermediate format is often best. One exception is calculating a covariance (`DataFrame.cov`) or correlation (`DataFrame.corr`) matrices which computes the correlation between each column:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.heatmap(df_wide.corr(), cmap=sns.diverging_palette(240, 10, s=99, n=300), )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Linear fitting (statsmodels)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Linear fitting between the different columns is available through the [statsmodels](https://www.statsmodels.org/stable/index.html) library. A nice way to play around with a wide variety of possible models is to use R-style functions. The usage of the functions in stastmodels is described [here](https://www.statsmodels.org/dev/example_formulas.html). You can find a more detailed description of the R-style functions [here](https://patsy.readthedocs.io/en/latest/formulas.html#the-formula-language). \n",
    "\n",
    "In short these functions describe the linear model as a string. For example, \"y ~ x + a + x * a\" fits the variable `y` as a function of `x`, `a`, and the interaction between `x` and `a`. The intercept is included by default (you can add \"+ 0\" to remove it)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "result = smf.logit('survived ~ age + sex + age * sex', data=titanic).fit()\n",
    "print(result.summary())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that statsmodels understands categorical variables and automatically replaces them with dummy variables.\n",
    "\n",
    "Above we used logistic regression, which is appropriate for the binary survival rate. A wide variety of linear models are available. Let's try a GLM, but assume that the fare is drawn from a Gamma distribution:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "age_dmean = titanic.age - titanic.age.mean()\n",
    "result = smf.glm('fare ~ age_dmean + embark_town', data=titanic).fit()\n",
    "print(result.summary())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Cherbourg passengers clearly paid a lot more...\n",
    "\n",
    "\n",
    "Note that we did not actually add the age_dmean to the dataframe. Statsmodels (or more precisely the underlying [patsy](https://patsy.readthedocs.io/en/latest/) library) automatically extracted this from our environment. This can lead to confusing behaviour..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# More reading"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Other useful features\n",
    "- [Concatenating](https://jakevdp.github.io/PythonDataScienceHandbook/03.06-concat-and-append.html) and [merging](https://jakevdp.github.io/PythonDataScienceHandbook/03.07-merge-and-join.html) of tables\n",
    "- [Lots of](http://pandas.pydata.org/pandas-docs/stable/basics.html#dt-accessor) [time](http://pandas.pydata.org/pandas-docs/stable/timeseries.html) [series](http://pandas.pydata.org/pandas-docs/stable/timedeltas.html) support\n",
    "- [Rolling Window functions](http://pandas.pydata.org/pandas-docs/stable/computation.html#window-functions) for after you have meaningfully sorted your data\n",
    "- and much, much more"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.2"
  },
  "toc": {
   "colors": {
    "hover_highlight": "#DAA520",
    "running_highlight": "#FF0000",
    "selected_highlight": "#FFD700"
   },
   "moveMenuLeft": true,
   "nav_menu": {
    "height": "225px",
    "width": "252px"
   },
   "navigate_menu": true,
   "number_sections": true,
   "sideBar": true,
   "threshold": 4,
   "toc_cell": false,
   "toc_section_display": "block",
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}