Newer
Older
"""
Defines the functions that can be called on parts of an MRI sequence to query or constrain any variables.
In addition this defines:
- [`variables`](@ref): dictionary containing all variables.
- [`VariableType`](@ref): parent type for any variables (whether number or JuMP variable).
- [`get_free_variable`](@ref): helper function to create new JuMP variables.
- [`VariableNotAvailable`](@ref): error raised if variable is not defined for specific [`AbstractBlock`](@ref).
- [`set_simple_constraints!`](@ref): call [`apply_simple_constraint!`](@ref) for each keyword argument.
- [`apply_simple_constraint!`](@ref): set a simple equality constraint.
- [`get_pulse`](@ref)/[`get_gradient`](@ref)/[`get_readout`](@ref): Used to get the pulse/gradient/readout part of a building block

Michiel Cottaar
committed
- [`gradient_orientation`](@ref): returns the gradient orientation of a waveform if fixed.
module Variables
import JuMP: @constraint, @variable, Model, @objective, objective_function, AbstractJuMPScalar
import ..Scanners: gradient_strength, slew_rate, Scanner
import ..BuildSequences: global_model, global_scanner, fixed
"""
Parent type of all components, building block, and sequences that form an MRI sequence.
"""
abstract type AbstractBlock end
function fixed(ab::AbstractBlock)
params = []
for prop_name in propertynames(ab)
push!(params, fixed(getproperty(ab, prop_name)))
end
return typeof(ab)(params...)
end
"""
adjust_internal(block, names_used; kwargs...)
Returns the adjusted blocks and add any keywords used in the process to `names_used`.
"""
adjustable(block)
Returns whether a sequence, building block, or component can be adjusted
Can return one of:
- `:false`: not adjustable
- `:gradient`: expects gradient adjustment parameters
- `:pulse`: expects RF pulse adjustment parameters
"""
adjustable(::AbstractBlock) = :false
"""
A sequence property that can be constrained and/or optimised.
It acts as a function, so you can call it on a sequence or building block to get the actual values (e.g., `v(sequence)`).
It can return one of the following:
- a number
- a vector of number
- a NamedTuple with the values for individual sequence components
name :: Symbol
f :: Function
struct AlternateVariable <: AnyVariable
name :: Symbol
other_var :: Symbol
to_other :: Function
from_other :: Function
inverse :: Bool
end
variable_defined_for(var, Val(type))
Check whether variable is defined for a specific sub-type.
"""
variable_defined_for(var::Variable, ::Val{T}) where {T <: AbstractBlock} = hasmethod(var.f, (T, ))
struct _Variables
variables :: Dict{Symbol, AnyVariable}
end
variables = _Variables(Dict{Symbol, AnyVariable}())
Base.getindex(v::_Variables, i::Symbol) = getfield(v, :variables)[i]
Base.keys(v::_Variables) = keys(getfield(v, :variables))
Base.propertynames(v::_Variables) = Tuple(keys(getfield(v, :variables)))
Base.getproperty(v::_Variables, s::Symbol) = v[s]
macro defvar(func_def)
return _defvar(func_def, nothing)
end
macro defvar(getter, func_def)
return _defvar(func_def, getter)
end
function _defvar(func_def, getter=nothing)
if getter isa Symbol
getter_dict = Dict(
:pulse => get_pulse,
:gradient => get_gradient,
:pathway => get_pathway,
:readout => get_readout,
)
if !(getter in keys(getter_dict))
error("label in `@defvar <label> <statement>` should be one of `pulse`/`gradient`/`pathway`/`readout`, not `$getter`")
end
getter = getter_dict[getter]
end
if ex isa Expr && ex.head == :function && length(ex.args) == 1
push!(func_names, ex.args[1])
return :nothing
end
try
fn_def = MacroTools.splitdef(ex)
push!(func_names, fn_def[:name])
new_def = Dict{Symbol, Any}()
new_def[:name] = Expr(:., fn_def[:name], QuoteNode(:f))
new_def[:args] = esc.(fn_def[:args])
new_def[:kwargs] = esc.(fn_def[:kwargs])
new_def[:whereparams] = esc.(fn_def[:whereparams])
return MacroTools.combinedef(new_def)
catch e
if e isa AssertionError
return ex
end
rethrow()
end
end
new_func_def = MacroTools.postwalk(adjust_function, func_def)
function fix_function_name(ex)
if ex in func_names
return esc(ex)
else
return ex
new_func_def = MacroTools.postwalk(fix_function_name, new_func_def)
expressions = Expr[]
for func_name in func_names
push!(expressions, quote
$(esc(func_name)) = if $(QuoteNode(func_name)) in keys(variables)
variables[$(QuoteNode(func_name))]
else
function $(func_name) end
getfield(variables, :variables)[$(QuoteNode(func_name))] = Variable($(QuoteNode(func_name)), $(func_name), $getter)
end
if $(esc(func_name)) isa AlternateVariable
error("$($(esc(func_name)).name) is defined through $($(esc(func_name)).other_var). Please define that variable instead.")
end
if !isnothing($getter) && $(esc(func_name)).getter != $getter
if isnothing($(esc(func_name)).getter)
$(esc(func_name)).getter = $getter
else
name = $(esc(func_name)).name
error("$(name) is already defined as a variable for $($(esc(func_name)).getter). Cannot switch to $($getter).")
end
end
Duration of the sequence or building block in ms.
function def_alternate_variable!(name::Symbol, other_var::Symbol, to_other::Function, from_other::Function, inverse::Bool)
getfield(variables, :variables)[name] = AlternateVariable(name, other_var, to_other, from_other, inverse)
def_alternate_variable!(:spoiler_scale, :spoiler_scale, q->1e-3 * 2π/q, l->1e-3 * 2π/l, true)
for name in [:slice_thickness, :bandwidth, :fov, :voxel_size]
inv_name = Symbol("inverse_" * string(name))
def_alternate_variable!(name, inv_name, inv, inv, true)
end
for (name, alt_name) in [
(:TE, :echo_time),
(:TR, :repetition_time),
(:Δ, :diffusion_time),
]
def_alternate_variable!(name, alt_name, identity, identity, false)
"""
Parent type for any variable in the MRI sequence.
Each variable can be one of:
- a new JuMP variable
- an expression linking this variable to other JuMP variable
- a number
Create these using [`get_free_variable`](@ref).
"""
const VariableType = Union{Number, AbstractJuMPScalar}
"""
get_free_variable(value; integer=false, start=0.01)
Get a representation of a given `variable` given a user-defined constraint.
The result is guaranteed to be a [`VariableType`](@ref).
get_free_variable(value::Number; integer=false, kwargs...) = integer ? Int(value) : Float64(value)
get_free_variable(value::VariableType; kwargs...) = value
get_free_variable(::Nothing; integer=false, start=0.01) = @variable(global_model(), start=start, integer=integer)
get_free_variable(value::Symbol; integer=false, kwargs...) = integer ? error("Cannot maximise or minimise an integer variable") : get_free_variable(Val(value); kwargs...)
function get_free_variable(::Val{:min}; kwargs...)
var = get_free_variable(nothing; kwargs...)
@objective model Min objective_function(model) + var
return var
end
function get_free_variable(::Val{:max}; kwargs...)
var = get_free_variable(nothing; kwargs...)
@objective model Min objective_function(model) - var
return var
end
Get the pulse played out during the building block.
Any `pulse` variables not explicitly defined for this building block will be passed on to the pulse.
"""
function get_pulse end
"""
Get the gradient played out during the building block.
Any `gradient` variables not explicitly defined for this building block will be passed on to the gradient.
"""
function get_gradient end
"""
Get the readout played out during the building block.
Any `readout` variables not explicitly defined for this building block will be passed on to the readout.
"""
"""
get_pathway(sequence)
Get the default spin pathway for the sequence.
Any `pathway` variables not explicitly defined for this building block will be passed on to the pathway.
"""
function get_pathway end

Michiel Cottaar
committed
"""
gradient_orientation(building_block)
Returns the gradient orientation.
"""

Michiel Cottaar
committed
function (var::Variable)(block::AbstractBlock, args...; kwargs...)
if !applicable(var.f, block, args...) && !isnothing(var.getter)
apply_to = var.getter(block)
if apply_to isa AbstractBlock
return var(apply_to, args...; kwargs...)
elseif apply_to isa NamedTuple
return NamedTuple(k => var(v, args...; kwargs...) for (k, v) in pairs(apply_to))
elseif apply_to isa AbstractVector{<:AbstractBlock} || apply_to isa Tuple
return var.(apply_to, args...; kwargs...)
end
function (var::AlternateVariable)(args...; kwargs...)
other_var = variables[var.other_var]
apply_from_other(res::Number) = var.from_other(res)
apply_from_other(res::AbstractArray{<:Number}) = var.from_other.(res)
apply_from_other(res::NamedTuple) = NamedTuple(k => apply_from_other(v) for (k, v) in pairs(res))
return apply_from_other(other_var(args...; kwargs...))
for base_fn in [:qval, :gradient_strength, :slew_rate]
fn3 = Symbol(String(base_fn) * "3")
@eval function $fn3(bb::AbstractBlock, args...; kwargs...)
if hasmethod(get_gradient, (typeof(bb), ))
return $fn3(get_gradient(bb), args...; kwargs...)
else
value = $base_fn(bb, args...; kwargs...)
if value isa Number && iszero(value)
return zero(SVector{3, Float64})
elseif value isa AbstractVector
return value
else
return value .* gradient_orientation(bb)

Michiel Cottaar
committed
end
@eval $fn3(nt::NamedTuple, args...; kwargs...) = map(v -> $fn3(v, args...; kwargs...), nt)

Michiel Cottaar
committed
end
"""
set_simple_constraints!(block, kwargs)
Add any constraints or objective functions to the variables of a [`AbstractBlock`](@ref).
Each keyword argument has to match one of the functions in [`variables`](@ref)(block).
If set to a numeric value, a constraint will be added to fix the function value to that numeric value.
If set to `:min` or `:max`, minimising or maximising this function will be added to the cost function.
"""
function set_simple_constraints!(block::AbstractBlock, kwargs)
real_kwargs = NamedTuple(key => value for (key, value) in kwargs if !isnothing(value))
for (key, value) in real_kwargs
var = variables[key]
if var isa AlternateVariable
if var.other_var in real_kwargs
error("Set constraints on both $key and $(var.other_var), however they are equivalent.")
end
invert_value(value::VariableType) = var.to_other(value)
invert_value(value::Symbol) = invert_value(Val(value))
invert_value(::Val{:min}) = var.inverse ? Val(:max) : Val(:min)
invert_value(::Val{:max}) = var.inverse ? Val(:min) : Val(:max)
invert_value(value::AbstractVector) = invert_value.(value)
apply_simple_constraint!(variables[var.other_var](block), invert_value(value))
else
apply_simple_constraint!(var(block), value)
end
end
nothing
end
"""
apply_simple_constraint!(variable, value)
Add a single constraint or objective to the `variable`.
`value` can be one of:
- `nothing`: do nothing
- `:min`: minimise the variable
- `:max`: maximise the variable
- `number`: fix variable to this value
- `equation`: fix variable to the result of this equation
"""
apply_simple_constraint!(variable::AbstractVector, value::Symbol) = apply_simple_constraint!(sum(variable), Val(value))
apply_simple_constraint!(variable::VariableType, value::Symbol) = apply_simple_constraint!(variable, Val(value))
apply_simple_constraint!(variable::VariableType, ::Val{:min}) = @objective global_model() Min objective_function(global_model()) + variable
apply_simple_constraint!(variable::VariableType, ::Val{:max}) = @objective global_model() Min objective_function(global_model()) - variable
apply_simple_constraint!(variable::VariableType, value::VariableType) = @constraint global_model() variable == value
apply_simple_constraint!(variable::AbstractVector, value::AbstractVector) = [apply_simple_constraint!(v1, v2) for (v1, v2) in zip(variable, value)]
apply_simple_constraint!(variable::AbstractVector, value::VariableType) = [apply_simple_constraint!(v1, value) for v1 in variable]
apply_simple_constraint!(variable::Number, value::Number) = @assert variable ≈ value "Variable set to multiple incompatible values."
function apply_simple_constraint!(variable::NamedTuple, value)
for sub_var in variable
apply_simple_constraint!(sub_var, value)
end
end
function apply_simple_constraint!(variable::NamedTuple, value::NamedTuple)
for key in keys(value)
apply_simple_constraint!(variable[key], value[key])
end
end
"""
make_generic(sequence/building_block/component)
Returns a generic version of the `BaseSequence`, `BaseBuildingBlock`, or `BaseComponent`
- Sequences are all flattened and returned as a single `Sequence` containing only `BuildingBlock` objects.
- Any `BaseBuildingBlock` is converted into a `BuildingBlock`.
- Pulses are replaced with `GenericPulse` (except for instant pulses).
- Instant readouts are replaced with `ADC`.
"""
function make_generic end
"""
scanner_constraints!(block)
Constraints [`gradient_strength`](@ref) and [`slew_rate`](@ref) to be less than the [`global_scanner`](@ref) maximum.
"""
function scanner_constraints!(bb::AbstractBlock)
try
global_scanner()
catch e
return
end
for f in (slew_rate, gradient_strength)
value = nothing
catch e
if e isa VariableNotAvailable
continue
else
rethrow()
end
end
if value isa AbstractVector
for v in value
@constraint global_model() v <= f(global_scanner())
@constraint global_model() v >= -f(global_scanner())
end
else
@constraint global_model() value <= f(global_scanner())
@constraint global_model() value >= -f(global_scanner())