Newer
Older
/* MELODIC - Multivariate exploratory linear optimized decomposition into
independent components
meldata.cc - data handler / container class
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 1999-2008 University of Oxford */
using namespace Utilities;
using namespace NEWIMAGE;
Matrix MelodicData::process_file(string fname, int numfiles)
volume4D<float> RawData;
//read data
message("Reading data file " << fname << " ... ");
read_volume4D(RawData,fname);
message(" done" << endl);
del_vols(RawData,opts.dummy.value());
Mean += meanvol(RawData)/numfiles;
//reshape
Matrix tmpData;
tmpData = RawData.matrix(Mask);
//estimate smoothness
Resels = est_resels(RawData,Mask);
//convert to percent BOLD signal change
if(opts.pbsc.value()){
message(" Converting data to percent BOLD signal change ...");
Matrix meanimg = convert_to_pbsc(tmpData);
meanR = meanimg.Row(1);
message(" done" << endl);
if(opts.remove_meanvol.value())
{
message(string(" Removing mean image ..."));
meanR = mean(tmpData);
tmpData = remmean(tmpData);
message(" done" << endl);
}
else meanR=ones(1,tmpData.Ncols());
if(opts.remove_meantc.value()){
meanC = mean(tmpData,2);
tmpData = remmean(tmpData,2);
}
//convert to power spectra
if(opts.pspec.value()){
message(" Converting data to powerspectra ...");
tmpData = calc_FFT(tmpData);
message(" done" << endl);
}
//switch dimension in case temporal ICA is required
if(opts.temporal.value()){
message(string(" Switching dimensions for temporal ICA") << endl);
tmpData = tmpData.t();
Matrix tmp;
tmp = meanC;
meanC = meanR.t();
meanR = tmp.t();
message(" Data size : " << Data.Nrows() << " x " << Data.Ncols() <<endl);
}
//variance - normalisation
if(opts.varnorm.value()){
message(" Normalising by voxel-wise variance ...");
stdDev = varnorm(tmpData,std::min(30,tmpData.Nrows()-1),
opts.vn_level.value())/numfiles;
stdDev += varnorm(tmpData,std::min(30,tmpData.Nrows()-1),
opts.vn_level.value())/numfiles;
stdDevi = pow(stdDev,-1);
message(" done" << endl);
return tmpData;
}
Matrix MelodicData::expand_mix()
{
Matrix out;
out = expand_dimred(mixMatrix);
return out;
}
Matrix MelodicData::expand_dimred(const Matrix& Mat)
{
int first, last;
first = 1;
last = DWM.at(0).Ncols();
Matrix tmp = DWM.at(0) * Mat.Rows(first,last);
for(unsigned int ctr = 1; ctr < DWM.size(); ctr++){
first = last + 1;
last += DWM.at(ctr).Ncols();
tmp &= DWM.at(ctr) * Mat.Rows(first, last);
return tmp;
}
Matrix MelodicData::reduce_dimred(const Matrix& Mat)
{
int first, last;
first = 1;
last = WM.at(0).Ncols();
Matrix tmp = WM.at(0) * Mat.Rows(first,last);
for(unsigned int ctr = 1; ctr < WM.size(); ctr++){
first = last + 1;
last += WM.at(ctr).Ncols();
tmp &= WM.at(ctr) * Mat.Rows(first, last);
void MelodicData::set_TSmode()
{
Matrix tmp, tmpT, tmpS, tmpT2, tmpS2, tmpT3;
tmp = expand_dimred(mixMatrix);
tmpT = zeros(tmp.Nrows()/numfiles, tmp.Ncols());
tmpS = ones(numfiles, tmp.Ncols());
outMsize("tmp",tmp);
outMsize("tmpT",tmpT);
outMsize("tmpS",tmpS);
dbgmsg(string(" approach ") << opts.approach.value() << endl);
message("Calculating T- and S-modes " << endl);
explained_var = krfact(tmp,tmpT,tmpS);
Tmodes.clear(); Smodes.clear();
for(int ctr = 1; ctr <= tmp.Ncols(); ctr++){
tmpT3 << reshape(tmp.Column(ctr),tmpT.Nrows(),numfiles);
outMsize("tmpT3", tmpT3);
tmpT2 << tmpT.Column(ctr);
tmpS2 << tmpS.Column(ctr);
tmpT3 << SP(tmpT3,pow(ones(tmpT3.Nrows(),1)*tmpS2.t(),-1));
if(numfiles>1)
tmpT2 |= tmpT3;
if(mean(tmpS2,1).AsScalar()<0){
tmpT2*=-1.0;
tmpS2*=-1.0;
add_Tmodes(tmpT2);
add_Smodes(tmpS2);
}
Tmodes.clear();
Smodes.clear();
for(int ctr = 1; ctr <= tmp.Ncols(); ctr++){
tmpT3 << tmp.Column(ctr);
add_Tmodes(tmpT3);
}
if(opts.approach.value()!=string("concat")){
//add GLM OLS fit
dbgmsg(string(" GLM fitting ") << endl);
if(Tdes.Storage()){
Matrix alltcs = Tmodes.at(0).Column(1);
for(int ctr=1; ctr < (int)Tmodes.size();ctr++)
alltcs|=Tmodes.at(ctr).Column(1);
if((alltcs.Nrows()==Tdes.Nrows())&&(Tdes.Nrows()>Tdes.Ncols()))
glmT.olsfit(alltcs,Tdes,Tcon);
}
if(Sdes.Storage()){
Matrix alltcs = Smodes.at(0);
for(int ctr=1; ctr < (int)Smodes.size();ctr++)
alltcs|=Smodes.at(ctr);
if((alltcs.Nrows()==Sdes.Nrows())&&(Sdes.Nrows()>Sdes.Ncols()&&alltcs.Nrows()>2))
glmS.olsfit(alltcs,Sdes,Scon);
}
}
// else{
// dbgmsg(string(" Bypassing krfac ") << endl);
// add_Tmodes(tmp);
// add_Smodes(tmpS);
// }
dbgmsg(string("END: set_TSmode"));
}
void MelodicData::setup()
{
numfiles = (int)opts.inputfname.value().size();
if(opts.filtermode){ // basic setup for filtering only
Data = process_file(opts.inputfname.value().at(0));
}
else{
if((numfiles > 1) && (opts.approach.value()==string("defl") || opts.approach.value()==string("symm")))
opts.approach.set_T("tica");
if(numfiles > 1 && opts.joined_vn.value()){
alldat = process_file(opts.inputfname.value().at(0), numfiles) / numfiles;
if(opts.pca_dim.value() > alldat.Nrows()-2){
cerr << "ERROR:: too many components selected \n\n";
exit(2);
}
if(opts.debug.value())
save4D(alldat,string("preproc_dat") + num2str(1));
for(int ctr = 1; ctr < numfiles; ctr++){
tmpData = process_file(opts.inputfname.value().at(ctr), numfiles) / numfiles;
save4D(tmpData,string("preproc_dat") + num2str(ctr+1));
if(tmpData.Ncols() == alldat.Ncols() && tmpData.Nrows() == alldat.Nrows())
alldat += tmpData;
else{
if(opts.approach.value()==string("tica")){
cerr << "ERROR:: data dimensions do not match, TICA not possible \n\n";
exit(2);
}
if(tmpData.Ncols() == alldat.Ncols()){
int mindim = min(alldat.Nrows(),tmpData.Nrows());
alldat = alldat.Rows(1,mindim);
tmpData = tmpData.Rows(1,mindim);
alldat += tmpData;
}
else
message("Data dimensions do not match - ignoring "+opts.inputfname.value().at(ctr) << endl);
}
}
//update mask
if(opts.update_mask.value()){
message("Excluding voxels with constant value ...");
update_mask(Mask, alldat);
message(" done" << endl);
}
if((numfiles > 1 ) && opts.joined_vn.value() && tmpvarnorm){
message(endl<<"Normalising jointly by voxel-wise variance ...");
stdDev = varnorm(alldat,alldat.Nrows(),3.1);
stdDevi = pow(stdDev,-1);
message(" done" << endl);
message(endl << "Initial data size : "<<alldat.Nrows()<<" x "<<alldat.Ncols()<<endl<<endl);
//estimate model order
Matrix tmpPPCA;
RowVector AdjEV, PercEV;
Matrix Corr, tmpE;
int order;
order = ppca_dim(remmean(alldat,2), RXweight, tmpPPCA, AdjEV, PercEV, Corr, pcaE, pcaD, Resels, opts.pca_est.value());
if (opts.paradigmfname.value().length()>0)
order += param.Ncols();
if(opts.pca_dim.value() == 0){
opts.pca_dim.set_T(order);
if(opts.pca_dim.value() < 0){
opts.pca_dim.set_T(min(order,-1*opts.pca_dim.value()));
PPCA=tmpPPCA;
}
if(opts.debug.value())
message(endl << "Model order : "<<order<<endl<<endl);
if (opts.paradigmfname.value().length()>0){
Matrix tmpPscales;
tmpPscales = param.t() * alldat;
paramS = stdev(tmpPscales.t());
calc_white(pcaE, pcaD, order, param, paramS, whiteMatrix, dewhiteMatrix);
}else
calc_white(pcaE, pcaD, order, whiteMatrix, dewhiteMatrix);
if(opts.debug.value()){
outMsize("pcaE",pcaE); saveascii(pcaE,"pcaE");
outMsize("pcaD",pcaD); saveascii(pcaD,"pcaD");
outMsize("AdjEV",AdjEV); saveascii(AdjEV,"AdjEV");
outMsize("PercEV",PercEV); saveascii(PercEV,"PercEV");
outMsize("tmpPPCA",tmpPPCA); saveascii(tmpPPCA,"tmpPPCA");
outMsize("whiteMatrix",whiteMatrix); saveascii(whiteMatrix,"whiteMatrix");
outMsize("dewhiteMatrix",dewhiteMatrix); saveascii(dewhiteMatrix,"dewhiteMatrix");
cerr << "Order: " << order << endl;
}
if(numfiles == 1){
Data = alldat;
Matrix tmp = IdentityMatrix(Data.Nrows());
DWM.push_back(tmp);
WM.push_back(tmp);
}
tmpData = process_file(opts.inputfname.value().at(ctr), numfiles);
tmpData=SP(tmpData,pow(ones(tmpData.Nrows(),1)*stdDev,-1));
}
message(" Individual whitening in a " << order << " dimensional subspace " << endl);
std_pca(tmpData, RXweight, Corr, pcaE, pcaD);
calc_white(pcaE, pcaD, order, newWM, newDWM);
if(!opts.dr_pca.value()){
std_pca(whiteMatrix*tmpData, RXweight, Corr, pcaE, pcaD);
calc_white(pcaE, pcaD, order, newWM, newDWM);
newDWM=(dewhiteMatrix*newDWM);
newWM=(newWM*whiteMatrix);
}
else{
if(opts.debug.value())
message(" --mod_pca ");
Matrix tmp1, tmp2;
tmp1 = whiteMatrix * alldat;
tmp1 = remmean(tmp1,2) * tmpData.t();
tmp2 = pinv(tmp1.t()).t();
std_pca(tmp1 * tmpData, RXweight, Corr, pcaE, pcaD);
calc_white(pcaE, pcaD, order, newWM, newDWM);
newDWM=(tmp2*newDWM);
newWM=(newWM * tmp1);
}
DWM.push_back(newDWM);
WM.push_back(newWM);
tmpData = newWM * tmpData;
//concatenate Data
if(Data.Storage() == 0)
Data = tmpData;
else
Data &= tmpData;
message(endl << " Data size : "<<Data.Nrows()<<" x "<<Data.Ncols()<<endl<<endl);
//save the mean & mask
save_volume(Mask,logger.appendDir("mask"));
save_volume(Mean,logger.appendDir("mean"));
void MelodicData::setup_misc()
{
//initialize Mean
//create mask
create_mask(Mask);
//setup background image
if(opts.bgimage.value()>""){
read_volume(background,opts.bgimage.value());
if(!samesize(Mean,background)){
cerr << "ERROR:: background image and data have different dimensions \n\n";
exit(2);
}
}else{
background = Mean;
}
if(!samesize(Mean,Mask)){
cerr << "ERROR:: mask and data have different dimensions \n\n";
exit(2);
}
//reset mean
Mean *= 0;
//set up weighting
}
//seed the random number generator
double tmptime = time(NULL);
if ( opts.seed.value() != -1 ) {
tmptime = opts.seed.value();
}
if(opts.paradigmfname.value().length()>0){
message(" Use columns in " << opts.paradigmfname.value()
<< " for PCA initialisation" <<endl);
param = read_ascii_matrix(opts.paradigmfname.value());
Matrix tmpPU, tmpPV;
DiagonalMatrix tmpPD;
SVD(param, tmpPD, tmpPU, tmpPV);
param = tmpPU;
opts.pca_dim.set_T(std::max(opts.pca_dim.value(), param.Ncols()+3));
if(opts.debug.value()){
outMsize("Paradigm",param); saveascii(param,"param");
//opts.guessfname.set_T(opts.paradigmfname.value());
}
//read in post-proc design matrices etc
if(opts.fn_Tdesign.value().length()>0)
Tdes = read_ascii_matrix(opts.fn_Tdesign.value());
if(opts.fn_Sdesign.value().length()>0)
Sdes = read_ascii_matrix(opts.fn_Sdesign.value());
if(opts.fn_Tcon.value().length()>0)
Tcon = read_ascii_matrix(opts.fn_Tcon.value());
if(opts.fn_Scon.value().length()>0)
Scon = read_ascii_matrix(opts.fn_Scon.value());
if(opts.fn_TconF.value().length()>0)
TconF = read_ascii_matrix(opts.fn_TconF.value());
if(opts.fn_SconF.value().length()>0)
SconF = read_ascii_matrix(opts.fn_SconF.value());
if(numfiles>1 && Sdes.Storage() == 0){
Sdes = ones(numfiles,1);
if(Scon.Storage() == 0){
Scon = ones(1,1);
Scon &= -1*Scon;
}
}
Tdes = remmean(Tdes,1);
void MelodicData::save()
{
//check for temporal ICA
if(opts.temporal.value()){
message(string("temporal ICA: transform back the data ... "));
Matrix tmpIC = mixMatrix.t();
mixMatrix=IC.t();
IC=tmpIC;
unmixMatrix=pinv(mixMatrix);
Data = Data.t();
tmpIC = meanC;
meanC = meanR.t();
meanR = tmpIC.t();
// whiteMatrix = whiteMatrix.t;
// dewhiteMatrix = dewhiteMatrix.t();
message(string("done") << endl);
opts.temporal.set_T(false); // Do not switch again!
message(endl << "Writing results to : " << endl);
if((IC.Storage()>0)&&(opts.output_origIC.value())&&(after_mm==false))
save4D(IC,opts.outputfname.value() + "_oIC");
//Output IC -- adjusted for noise
if(IC.Storage()>0){
//Matrix ICadjust;
if(after_mm){
save4D(IC,opts.outputfname.value() + "_IC");
// ICadjust = IC;
}
else{
Matrix resids = stdev(Data - mixMatrix * IC);
for(int ctr=1;ctr<=resids.Ncols();ctr++)
if(resids(1,ctr) < 0.05)
resids(1,ctr)=1;
// stdNoisei = pow(stdev(Data - mixMatrix * IC)*
// std::sqrt((float)(Data.Nrows()-1))/
// std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1);
stdNoisei = pow(resids*
std::sqrt((float)(Data.Nrows()-1))/
std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1);
ColumnVector diagvals;
diagvals=pow(diag(unmixMatrix*unmixMatrix.t()),-0.5);
save4D(SP(IC,diagvals*stdNoisei),opts.outputfname.value() + "_IC");
}
if(opts.output_origIC.value())
save4D(stdNoisei,string("Noise_stddev_inv"));
}
saveascii(expand_mix(), opts.outputfname.value() + "_mix");
mixFFT=calc_FFT(expand_mix(), opts.logPower.value());
saveascii(mixFFT,opts.outputfname.value() + "_FTmix");
//Output PPCA
if(PPCA.Storage()>0)
saveascii(PPCA, opts.outputfname.value() + "_PPCA");
//Output ICstats
if(ICstats.Storage()>0)
saveascii(ICstats,opts.outputfname.value() + "_ICstats");
if(opts.output_unmix.value() && unmixMatrix.Storage()>0)
saveascii(unmixMatrix,opts.outputfname.value() + "_unmix");
//Output Mask
message(" "<< logger.appendDir("mask") <<endl);
//Output mean
if(opts.output_mean.value() && meanC.Storage()>0 && meanR.Storage()>0){
saveascii(meanR,opts.outputfname.value() + "_meanR");
saveascii(meanC,opts.outputfname.value() + "_meanC");
}
//Output white
if(opts.output_white.value() && whiteMatrix.Storage()>0&&
dewhiteMatrix.Storage()>0){
saveascii(whiteMatrix,opts.outputfname.value() + "_white");
saveascii(dewhiteMatrix,opts.outputfname.value() + "_dewhite");
Matrix tmp;
tmp=calc_FFT(dewhiteMatrix, opts.logPower.value());
saveascii(tmp,opts.outputfname.value() + "_FTdewhite");
//Output PCA
if(opts.output_pca.value() && pcaD.Storage()>0&&pcaE.Storage()>0){
saveascii(pcaE,opts.outputfname.value() + "_pcaE");
saveascii((Matrix) diag(pcaD),opts.outputfname.value() + "_pcaD");
if(whiteMatrix.Ncols()==Data.Ncols())
PCAmaps = dewhiteMatrix.t();
else
PCAmaps = whiteMatrix * Data;
save4D(PCAmaps,opts.outputfname.value() + "_pca");
}
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
int MelodicData::remove_components()
{
message("Reading " << opts.filtermix.value() << endl)
mixMatrix = read_ascii_matrix(opts.filtermix.value());
if (mixMatrix.Storage()<=0) {
cerr <<" Please specify the mixing matrix correctly" << endl;
exit(2);
}
unmixMatrix = pinv(mixMatrix);
IC = unmixMatrix * Data;
string tmpstr;
tmpstr = opts.filter.value();
Matrix noiseMix;
Matrix noiseIC;
int ctr=0;
char *p;
char t[1024];
const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";
message("Filtering the data...");
strcpy(t, tmpstr.c_str());
p=strtok(t,discard);
ctr = atoi(p);
if(ctr>0 && ctr<=mixMatrix.Ncols()){
message(" "<< ctr );
noiseMix = mixMatrix.Column(ctr);
noiseIC = IC.Row(ctr).t();
cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
}
do{
p=strtok(NULL,discard);
if(p){
message(" "<<ctr);
noiseMix |= mixMatrix.Column(ctr);
noiseIC |= IC.Row(ctr).t();
}
else{
cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
}
}
}while(p);
message(endl);
Matrix newData;
outMsize("DATA",Data);
outMsize("IC",IC);
outMsize("noiseIC",noiseIC);
outMsize("noiseMix",noiseMix);
outMsize("meanR",meanR);
outMsize("meanC",meanC);
if(meanR.Storage()>0)
newData = newData + ones(newData.Nrows(),1)*meanR;
read_volume4D(tmp,opts.inputfname.value().at(0));
tmp.setmatrix(newData,Mask);
save_volume4D(tmp,logger.appendDir(opts.outputfname.value() + "_ICAfiltered"));
return 0;
} // int remove_components()
void MelodicData::create_RXweight()
{
message("Reading the weights for the covariance R_X from file "<< opts.segment.value() << endl);
volume4D<float> tmpRX;
read_volume4D(tmpRX,opts.segment.value());
RXweight = tmpRX.matrix(Mask);
}
if(Resels == 0){
string SM_path = opts.binpath + "smoothest";
string Mask_fname = logger.appendDir("mask");
if(opts.segment.value().length()>0){
}
// Setup external call to smoothest:
char callSMOOTHESTstr[1000];
ostrstream osc(callSMOOTHESTstr,1000);
osc << SM_path << " -d " << data_dim()
<< " -r " << opts.inputfname.value().at(0) << " -m "
<< Mask_fname << " > " << logger.appendDir("smoothest") << '\0';
message(" Calling Smoothest: " << callSMOOTHESTstr << endl);
system(callSMOOTHESTstr);
//read back the results
ifstream in;
string str;
Resels = 1.0;
in.open(logger.appendDir("smoothest").c_str(), ios::in);
if(in>0){
for(int ctr=1; ctr<7; ctr++)
in >> str;
in.close();
if(str!="nan")
Resels = atof(str.c_str());
unsigned long MelodicData::standardise(volume<float>& mask, volume4D<float>& R)
{
for (int z=mask.minz(); z<=mask.maxz(); z++) {
for (int y=mask.miny(); y<=mask.maxy(); y++) {
for (int x=mask.minx(); x<=mask.maxx(); x++) {
if( mask(x,y,z) > 0.5) {
count ++;
if( M > 2 ) {
// For each voxel
// calculate mean and standard deviation...
double Sx = 0.0, SSx = 0.0;
for ( int t = 0; t < M; t++ ) {
float R_it = R(x,y,z,t);
Sx += R_it;
SSx += (R_it)*(R_it);
}
float mean = Sx / M;
float sdsq = (SSx - ((Sx)*(Sx) / M)) / (M - 1) ;
if (sdsq<=0) {
// trap for differences between mask and invalid data
mask(x,y,z)=0;
count--;
} else {
// ... and use them to standardise to N(0, 1).
for ( unsigned short t = 0; t < M; t++ ) {
R(x,y,z,t) = (R(x,y,z,t) - mean) / sqrt(sdsq);
}
}
}
}
}
}
}
return count;
float MelodicData::est_resels(volume4D<float> R, volume<float> mask)
{
message(" Estimating data smoothness ... ");
unsigned long mask_volume = standardise(mask, R);
int dof = R.tsize();
unsigned long N = mask_volume;
// MJ additions to make it cope with 2D images
bool usez = true;
if (R.zsize() <= 1) { usez = false; }
enum {X = 0, Y, Z};
float SSminus[3] = {0, 0, 0}, S2[3] = {0, 0, 0};
int zstart=1;
if (!usez) zstart=0;
for ( unsigned short z = zstart; z < R.zsize() ; z++ )
for ( unsigned short y = 1; y < R.ysize() ; y++ )
for ( unsigned short x = 1; x < R.xsize() ; x++ )
// Sum over N
if( (mask(x, y, z)>0.5) &&
(mask(x-1, y, z)>0.5) &&
(mask(x, y-1, z)>0.5) &&
( (!usez) || (mask(x, y, z-1)>0.5) ) ) {
for ( unsigned short t = 0; t < R.tsize(); t++ ) {
// Sum over M
SSminus[X] += R(x, y, z, t) * R(x-1, y, z, t);
SSminus[Y] += R(x, y, z, t) * R(x, y-1, z, t);
if (usez) SSminus[Z] += R(x, y, z, t) * R(x, y, z-1, t);
S2[X] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) +
R(x-1, y, z, t)*R(x-1, y, z, t));
S2[Y] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) +
R(x, y-1, z, t)*R(x, y-1, z, t));
if (usez) S2[Z] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) +
R(x, y, z-1, t)*R(x, y, z-1, t));
}
float norm = 1.0/(float) N;
float v = dof; // v - degrees of freedom (nu)
if(R.tsize() > 1) {
norm = (v - 2) / ((v - 1) * N * R.tsize());
}
// for extreme smoothness
if (SSminus[X]>=0.99999999*S2[X])
SSminus[X]=0.99999*S2[X];
if (SSminus[Y]>=0.99999999*S2[Y])
SSminus[Y]=0.99999*S2[Y];
if (usez)
if (SSminus[Z]>=0.99999999*S2[Z])
// Convert to sigma squared
float sigmasq[3] = {0,0,0};
sigmasq[X] = -1.0 / (4 * log(fabs(SSminus[X]/S2[X])));
sigmasq[Y] = -1.0 / (4 * log(fabs(SSminus[Y]/S2[Y])));
if (usez) { sigmasq[Z] = -1.0 / (4 * log(fabs(SSminus[Z]/S2[Z]))); }
// Convert to full width half maximum
float FWHM[3] = {0,0,0};
FWHM[X] = sqrt(8 * log(2) * sigmasq[X]);
FWHM[Y] = sqrt(8 * log(2) * sigmasq[Y]);
if (usez) { FWHM[Z] = sqrt(8 * log(2) * sigmasq[Z]); }
float resels = FWHM[X] * FWHM[Y];
if (usez) resels *= FWHM[Z];
message(" done " <<endl);
return resels;
}
void MelodicData::create_mask(volume<float>& theMask)
{
if(opts.use_mask.value() && opts.maskfname.value().size()>0){ // mask provided
read_volume(theMask,opts.maskfname.value());
message("Mask provided : " << opts.maskfname.value()<<endl<<endl);
}
else{
if(opts.perf_bet.value() && opts.use_mask.value()){ //use BET
//save first image
tmpnam(Mean_fname); // generate a tmp name
save_volume(Mean,Mean_fname);
// set up all strings
string BET_outputfname = string(Mean_fname)+"_brain";
string BET_path = opts.binpath + "bet";
string BET_optarg = "-m -f 0.4"; // see man bet
string Mask_fname = BET_outputfname+"_mask";
// char callBETstr[1000];
// ostrstream betosc(callBETstr,1000);
// betosc << BET_path << " " << Mean_fname << " "
// << BET_outputfname << " " << BET_optarg << " > /dev/null " << '\0';
// message(" Calling BET: " << callBETstr << endl);
// system(callBETstr);
string tmpstr = BET_path + string(" ") +
Mean_fname + string(" ") + BET_outputfname + string(" ") +
BET_optarg + string(" > /dev/null ");
system(tmpstr.c_str());
// read back the Mask file
read_volume(theMask,Mask_fname);
// clean /tmp
char callRMstr[1000];
ostrstream osc(callRMstr,1000);
osc << "rm " << string(Mean_fname) <<"* " << '\0';
system(callRMstr);
if(opts.use_mask.value()){ //just threshold the Mean
message("Create mask ... ");
float Mmin, Mmax, Mtmp;
Mmin = Mean.min(); Mmax = Mean.max();
theMask = binarise(Mean,Mmin + opts.threshold.value()*
(Mmax-Mmin),Mmax);
message("done" << endl);
}
else{ //well, don't threshold then
}
}
if(opts.remove_endslices.value()){
// just in case mc introduced something nasty
message(" Deleting end slices" << endl);
for(int ctr1=theMask.miny(); ctr1<=theMask.maxy(); ctr1++){
for(int ctr2=theMask.minx(); ctr2<=theMask.maxx(); ctr2++){
theMask(ctr2,ctr1,Mask.minz()) = 0.0;
theMask(ctr2,ctr1,Mask.maxz()) = 0.0;
}
int numComp = mixMatrix.Ncols(), numVox = IC.Ncols(),
//flip IC maps to be positive (on max)
//flip Subject/Session modes to be positive (on average)
//flip time courses accordingly
if(IC.Row(ctr_i).MaximumAbsoluteValue()>IC.Row(ctr_i).Maximum()){
message("Sorting IC maps" << endl);
Matrix tmpscales, tmpICrow, tmpMIXcol;
if(numfiles > 1 && opts.approach.value()==string("tica")){
set_TSmode();
Matrix allmodes = Smodes.at(0);
for(int ctr = 1; ctr < (int)Smodes.size();++ctr)
allmodes |= Smodes.at(ctr);
tmpscales = median(allmodes).t();
} else {
// re-order wrt standard deviation of IC maps
tmpscales = stdev(IC,2);
ICstats = tmpscales;
double max_val, min_val = tmpscales.Minimum()-1;
for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
max_val = tmpscales.Maximum2(i,j);
ICstats(ctr_i,1)=max_val;
tmpICrow = IC.Row(ctr_i);
tmpMIXcol = mixMatrix.Column(ctr_i);
IC.SubMatrix(ctr_i,ctr_i,1,numVox) = IC.SubMatrix(i,i,1,numVox);
mixMatrix.SubMatrix(1,numTime,ctr_i,ctr_i) =
IC.SubMatrix(i,i,1,numVox) = tmpICrow.SubMatrix(1,1,1,numVox);
mixMatrix.SubMatrix(1,numTime,i,i) = tmpMIXcol.SubMatrix(1,numTime,1,1);
tmpscales(i,1)=tmpscales(ctr_i,1);
tmpscales(ctr_i,1)=min_val;
ICstats /= ICstats.Column(1).Sum();
ICstats *= 100;
if(EVP.Storage()>0){
tmpscales = ICstats.Column(1).AsMatrix(ICstats.Nrows(),1) * EVP(1,numComp);
ICstats |= tmpscales;
}
if(Data.Storage()>0&&stdDev.Storage()>0){
Matrix copeP(tmpscales), copeN(tmpscales);
Matrix max_ICs(tmpscales), min_ICs(tmpscales);
for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
int i,j;
max_ICs(ctr_i,1) = IC.Row(ctr_i).Maximum2(i,j);
copeP(ctr_i,1) = std::abs((pinv(mixMatrix)*
Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*
(mixMatrix.Column(ctr_i).Maximum()-
mixMatrix.Column(ctr_i).Minimum())/meanR(1,j));
min_ICs(ctr_i,1) = IC.Row(ctr_i).Minimum2(i,j);
copeN(ctr_i,1) = -1.0*std::abs((pinv(mixMatrix)*
Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*
(mixMatrix.Column(ctr_i).Maximum()-
mixMatrix.Column(ctr_i).Minimum())/meanR(1,j));
}
ICstats |= copeP;
ICstats |= copeN;
}
mixFFT=calc_FFT(expand_mix(), opts.logPower.value());
unmixMatrix = pinv(mixMatrix);
}
void MelodicData::status(const string &txt)
{
cout << "MelodicData Object " << txt << endl;
if(Data.Storage()>0){cout << "Data: " << Data.Nrows() <<"x" << Data.Ncols() << endl;}else{cout << "Data empty " <<endl;}
if(pcaE.Storage()>0){cout << "pcaE: " << pcaE.Nrows() <<"x" << pcaE.Ncols() << endl;}else{cout << "pcaE empty " <<endl;}
if(pcaD.Storage()>0){cout << "pcaD: " << pcaD.Nrows() <<"x" << pcaD.Ncols() << endl;}else{cout << "pcaD empty " <<endl;}
if(whiteMatrix.Storage()>0){cout << "white: " << whiteMatrix.Nrows() <<"x" << whiteMatrix.Ncols() << endl;}else{cout << "white empty " <<endl;}
if(dewhiteMatrix.Storage()>0){cout << "dewhite: " << dewhiteMatrix.Nrows() <<"x" << dewhiteMatrix.Ncols() << endl;}else{cout << "dewhite empty " <<endl;}
if(mixMatrix.Storage()>0){cout << "mix: " << mixMatrix.Nrows() <<"x" << mixMatrix.Ncols() << endl;}else{cout << "mix empty " <<endl;}