Newer
Older
/* MELODIC - Multivariate exploratory linear optimized decomposition into
independent components
melhlprfns.cc - misc functions
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 1999-2008 University of Oxford */
#include "melhlprfns.h"
#include "libprob.h"
#include "miscmaths/miscprob.h"
#include "miscmaths/t2z.h"
#include "miscmaths/f2z.h"
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
namespace Melodic{
void update_mask(volume<float>& mask, Matrix& Data)
{
Matrix DStDev=stdev(Data);
volume4D<float> tmpMask, RawData;
tmpMask.setmatrix(DStDev,mask);
RawData.setmatrix(Data,mask);
float tMmax;
volume<float> tmpMask2;
tmpMask2 = tmpMask[0];
tMmax = tmpMask2.max();
double st_mean = DStDev.Sum()/DStDev.Ncols();
double st_std = stdev(DStDev.t()).AsScalar();
mask = binarise(tmpMask2,(float) max((float) st_mean-3*st_std,(float) 0.01*st_mean),tMmax);
Data = RawData.matrix(mask);
}
void del_vols(volume4D<float>& in, int howmany)
{
for(int ctr=1; ctr<=howmany; ctr++){
in.deletevolume(ctr);
}
}
Matrix calc_FFT(const Matrix& Mat, const bool logpwr)
{
Matrix res;
for(int ctr=1; ctr <= Mat.Ncols(); ctr++){
ColumnVector tmpCol;
tmpCol=Mat.Column(ctr);
ColumnVector FtmpCol_real;
ColumnVector FtmpCol_imag;
ColumnVector tmpPow;
if(tmpCol.Nrows()%2 != 0){
Matrix empty(1,1); empty=0;
tmpCol &= empty;
}
RealFFT(tmpCol,FtmpCol_real,FtmpCol_imag);
tmpPow = pow(FtmpCol_real,2)+pow(FtmpCol_imag,2);
tmpPow = tmpPow.Rows(2,tmpPow.Nrows());
if(logpwr) tmpPow = log(tmpPow);
if(res.Storage()==0){res= tmpPow;}else{res|=tmpPow;}
}
return res;
} //Matrix calc_FFT()
Matrix smoothColumns(const Matrix& inp)
{
Matrix temp(inp);
int ctr1 = temp.Nrows();
Matrix temp2(temp);
temp2=0;
temp = temp.Row(4) & temp.Row(3) & temp.Row(2) & temp & temp.Row(ctr1-1)
& temp.Row(ctr1-2) &temp.Row(ctr1-3);
double kern[] ={0.0045 , 0.055, 0.25, 0.4, 0.25, 0.055, 0.0045};
double fac = 0.9090909;
for(int cc=1;cc<=temp2.Ncols();cc++){
for(int cr=1;cr<=temp2.Nrows();cr++){
temp2(cr,cc) = fac*( kern[0] * temp(cr,cc) + kern[1] * temp(cr+1,cc) +
kern[2] * temp(cr+2,cc) + kern[3] * temp(cr+3,cc) +
kern[4] * temp(cr+4,cc) + kern[5] * temp(cr+5,cc) +
kern[6] * temp(cr+6,cc));
}
}
return temp2;
} //Matrix smoothColumns()
Matrix convert_to_pbsc(Matrix& inp)
{
Matrix meanimg;
meanimg = mean(inp);
float eps = 0.00001;
for(int ctr=1; ctr <= inp.Ncols(); ctr++){
if(meanimg(1,ctr) < eps)
meanimg(1,ctr) = eps;
}
for(int ctr=1; ctr <= inp.Nrows(); ctr++){
Matrix tmp;
tmp << inp.Row(ctr);
inp.Row(ctr) << 100 * SP((tmp - meanimg),pow(meanimg,-1));
}
inp = remmean(inp);
return meanimg;
} //void convert_to_pbsc
RowVector varnorm(Matrix& in, int dim, float level)
{
Matrix Corr;
Corr = calc_corr(in);
RowVector out;
out = varnorm(in,Corr,dim,level);
return out;
} //RowVector varnorm
Matrix tmp = vars;
in = SP(in,pow(ones(in.Nrows(),1) * tmp,-1));
RowVector varnorm(Matrix& in, Matrix& Corr, int dim, float level)
{
Matrix tmpE, white, dewhite;
calc_white(tmpE,tmpD, dim, white, dewhite);
Matrix ws = white * in;
for(int ctr1 = 1; ctr1<=ws.Ncols(); ctr1++)
for(int ctr2 = 1; ctr2<=ws.Nrows(); ctr2++)
if(std::abs(ws(ctr2,ctr1)) < level)
ws(ctr2,ctr1)=0;
for(int ctr1 = 1; ctr1<=tmpD.Ncols(); ctr1++)
if(tmpD(ctr1) < 0.01){
tmpD(ctr1) = 1.0;
in.Column(ctr1) = 0.0*in.Column(ctr1);
return tmpD;
} //RowVector varnorm
Matrix SP2(const Matrix& in, const Matrix& weights, bool econ)
{
Matrix Res;
Res = in;
if(econ){
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = tmp * weights(1,ctr);
Res.Column(ctr) = tmp;
}
}
else{
Res = ones(in.Nrows(),1)*weights.Row(1);
Res = SP(in,Res);
}
return Res;
} //Matrix SP
Matrix corrcoef(const Matrix& in1, const Matrix& in2){
Matrix tmp = in1;
tmp |= in2;
Matrix out;
out=MISCMATHS::corrcoef(tmp,0);
return out.SubMatrix(1,in1.Ncols(),in1.Ncols()+1,out.Ncols());
}
Matrix corrcoef(const Matrix& in1, const Matrix& in2, const Matrix& part){
Matrix tmp1 = in1, tmp2 = in2, out;
if(part.Storage()){
tmp1 = tmp1 - part * pinv(part) * tmp1;
tmp2 = tmp2 - part * pinv(part) * tmp2;
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
Matrix calc_corr(const Matrix& in, bool econ)
{
Matrix Res;
Res = zeros(in.Nrows(),in.Nrows());
if(econ){
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = tmp - mean(tmp).AsScalar();
Res += (tmp * tmp.t()) / in.Ncols();
}
}
else
Res = cov(in.t());
return Res;
} //Matrix calc_corr
Matrix calc_corr(const Matrix& in, const Matrix& weights, bool econ)
{
Matrix Res;
Res = zeros(in.Nrows(),in.Nrows());
Matrix localweights;
if(weights.Storage() == 0)
localweights = ones(1,in.Ncols());
else
localweights = weights;
if(econ){
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = tmp - mean(tmp).AsScalar();
tmp = tmp * localweights(1,ctr);
Res += (tmp * tmp.t()) / in.Ncols();
}
}
else{
Res = SP2(in,localweights);
Res = calc_corr(Res, 0);
}
return Res;
} //Matrix calc_corr
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
float calc_white(const Matrix& tmpE, const RowVector& tmpD, const RowVector& PercEV, int dim, Matrix& param, Matrix& paramS, Matrix& white, Matrix& dewhite)
{
// tmpD2= tmpD | tmpPD.AsRow().Columns(tmpPE.Ncols()-param.Ncols()+1,tmpPE.Ncols());
// cerr << tmpPD.AsRow().Columns(tmpPE.Ncols()-param.Ncols()+1,tmpPE.Ncols()) << endl;
//
// Matrix tmpPE;
// tmpPE = SP(param,ones(param.Nrows(),1)*pow(stdev(param,1)*std::sqrt((float)param.Nrows()),-1));
// RE |= tmpPE;
// RowVector tmpD2;
// tmpD2 = tmpD | stdev(param,1).AsRow()*std::sqrt((float)param.Nrows());
// RD << abs(diag(tmpD2.t()));
// RD << RD.SymSubMatrix(N-dim+1,N);
Matrix RE;
DiagonalMatrix RD;
int N = tmpE.Ncols();
dim = std::min(dim,N);
// cerr << stdev(param) << endl;
RE = tmpE.Columns(std::min(N-dim+1+param.Ncols(),N-2),N);
RE |= param;
// cerr << paramS.Nrows() << " x " << paramS.Ncols() << endl;
// cerr << paramS << endl;
RowVector tmpD2;
tmpD2 = tmpD | pow(paramS,2).AsRow();
RD << abs(diag(tmpD2.t()));
// cerr << " " <<tmpD2.Ncols() << " " << N << " " << dim << endl;
RD << RD.SymSubMatrix(N-dim+1+param.Ncols(),N+param.Ncols());
float res = 1.0;
white = sqrt(abs(RD.i()))*RE.t();
dewhite = RE*sqrt(RD);
if(dim < N)
res = PercEV(dim);
return res;
} //Matrix calc_white
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
float calc_white(const Matrix& tmpE, const RowVector& tmpD, const RowVector& PercEV, int dim, Matrix& white, Matrix& dewhite)
{
Matrix RE;
DiagonalMatrix RD;
int N = tmpE.Ncols();
dim = std::min(dim,N);
RE = tmpE.Columns(N-dim+1,N);
RD << abs(diag(tmpD.t()));
RD << RD.SymSubMatrix(N-dim+1,N);
float res = 1.0;
white = sqrt(abs(RD.i()))*RE.t();
dewhite = RE*sqrt(RD);
if(dim < N)
res = PercEV(dim);
return res;
} //Matrix calc_white
void calc_white(const Matrix& tmpE, const RowVector& tmpD, int dim, Matrix& white, Matrix& dewhite)
{
RowVector tmp(tmpE.Ncols());
float tmp2;
tmp2 = calc_white(tmpE,tmpD, tmp, dim, white, dewhite);
} //Matrix calc_white
void calc_white(const Matrix& tmpE, const RowVector& tmpD, int dim, Matrix& param, Matrix& paramS, Matrix& white, Matrix& dewhite)
{
RowVector tmp(tmpE.Ncols());
float tmp2;
tmp2 = calc_white(tmpE,tmpD, tmp, dim, param, paramS, white, dewhite);
} //Matrix calc_white
void calc_white(const Matrix& Corr, int dim, Matrix& white, Matrix& dewhite)
{
Matrix RE;
DiagonalMatrix RD;
SymmetricMatrix tmp;
RowVector tmp2;
tmp << Corr;
EigenValues(tmp,RD,RE);
tmp2 = diag(RD).t();
calc_white(RE,tmp2, dim, white, dewhite);
} //Matrix calc_white
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
void std_pca(const Matrix& Mat, const Matrix& weights, Matrix& Corr, Matrix& evecs, RowVector& evals)
{
if(weights.Storage()>0)
Corr << calc_corr(Mat, weights);
else
Corr << calc_corr(Mat);
SymmetricMatrix tmp;
tmp << Corr;
DiagonalMatrix tmpD;
EigenValues(tmp,tmpD,evecs);
evals = tmpD.AsRow();
} //void std_pca
void std_pca(const Matrix& Mat, Matrix& Corr, Matrix& evecs, RowVector& evals)
{
Matrix weights;
std_pca(Mat,weights,Corr,evecs,evals);
} //void std_pca
void em_pca(const Matrix& Mat, Matrix& evecs, RowVector& evals, int num_pc, int iter)
{
Matrix guess;
guess = normrnd(Mat.Nrows(),num_pc);
em_pca(Mat,guess,evecs,evals,num_pc,iter);
} //void em_pca
void em_pca(const Matrix& Mat, Matrix& guess, Matrix& evecs, RowVector& evals, int num_pc, int iter)
{
Matrix C;
if(guess.Ncols() < num_pc){
C=normrnd(Mat.Nrows(),num_pc);
C.Columns(1,guess.Ncols()) = guess;
}
else
C = guess;
Matrix tmp, tmp2;
for(int ctr=1; ctr <= iter; ctr++){
// E-Step
tmp = C.t()*C;
tmp = tmp.i();
tmp = tmp * C.t();
tmp = tmp * Mat;
// M-Step
tmp2 = tmp * tmp.t();
tmp2 = tmp2.i();
tmp2 = Mat*tmp.t()*tmp2;
C = tmp2;
}
symm_orth(C);
Matrix Evc, tmpC;
RowVector Evl;
tmp = C.t() * Mat;
std_pca(tmp,tmpC,Evc,Evl);
evals = Evl;
evecs = C * Evc;
} //void em_pca
float rankapprox(const Matrix& Mat, Matrix& cols, Matrix& rows, int dim)
{
Matrix Corr, Evecs, tmpWM, tmpDWM, tmp;
RowVector Evals;
std_pca(Mat.t(), Corr, Evecs, Evals);
calc_white(Corr, dim, tmpWM, tmpDWM);
tmp = tmpWM * Mat.t();
cols = tmp.t();
rows << tmpDWM;
float res;
Evals=fliplr(Evals);
res = sum(Evals.Columns(1,dim),2).AsScalar()/sum(Evals,2).AsScalar()*100;
return res;
RowVector krfact(const Matrix& Mat, Matrix& cols, Matrix& rows)
Matrix out; RowVector res(Mat.Ncols());
for(int ctr1 = 1; ctr1 <= Mat.Ncols(); ctr1++){
Matrix tmpVals(cols.Nrows(),rows.Nrows());
for(int ctr2 = 1; ctr2 <= rows.Nrows(); ctr2++)
tmpVals.Column(ctr2) << Mat.SubMatrix(cols.Nrows() *
(ctr2 - 1) + 1,cols.Nrows()*ctr2 ,ctr1,ctr1);
Matrix tmpcols, tmprows;
res(ctr1) =rankapprox(tmpVals, tmpcols, tmprows);
cols.Column(ctr1) = tmpcols;
rows.Column(ctr1) = tmprows;
}
return res;
RowVector krfact(const Matrix& Mat, int colnum, Matrix& cols, Matrix& rows)
cols = zeros(colnum,Mat.Ncols());
rows = zeros(int(Mat.Nrows() / colnum),Mat.Ncols());
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
} // krfact
Matrix krprod(const Matrix& cols, const Matrix& rows)
{
Matrix out;
out = zeros(cols.Nrows()*rows.Nrows(),cols.Ncols());
for(int ctr1 = 1; ctr1 <= cols.Ncols(); ctr1++)
for(int ctr2 = 1; ctr2 <= rows.Nrows(); ctr2++)
{
out.SubMatrix(cols.Nrows()*(ctr2-1)+1,cols.Nrows()*ctr2,ctr1,ctr1) << cols.Column(ctr1) * rows(ctr2,ctr1);
}
return out;
} // krprod
Matrix krapprox(const Matrix& Mat, int size_cols, int dim)
{
Matrix out, cols, rows;
out = zeros(Mat.Nrows(), Mat.Ncols());
cols = zeros(size_cols,Mat.Ncols());
rows = zeros(int(Mat.Nrows() / size_cols), Mat.Ncols());
krfact(Mat,cols,rows);
out = krprod(cols, rows);
return out;
} // krapprox
void adj_eigspec(const RowVector& in, RowVector& out1, RowVector& out2, RowVector& out3, int& out4, int num_vox, float resels)
{
RowVector AdjEV;
AdjEV << in.AsRow();
AdjEV = AdjEV.Columns(3,AdjEV.Ncols());
AdjEV = AdjEV.Reverse();
RowVector CircleLaw;
int NumVox = (int) floor(num_vox/(2.5*resels));
CircleLaw = Feta(int(AdjEV.Ncols()), NumVox);
for(int ctr=1;ctr<=CircleLaw.Ncols(); ctr++){
if(CircleLaw(ctr)<5*10e-10){CircleLaw(ctr) = 5*10e-10;}
}
/* float slope;
slope = CircleLaw.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() -
int(AdjEV.Ncols()/4)).Sum() /
AdjEV.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() -
int(AdjEV.Ncols()/4)).Sum();*/
RowVector PercEV(AdjEV);
PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar());
AdjEV << SP(AdjEV,pow(CircleLaw.Columns(1,AdjEV.Ncols()),-1));
SortDescending(AdjEV);
int maxEV = 1;
float threshold = 0.98;
for(int ctr_i = 1; ctr_i < PercEV.Ncols(); ctr_i++){
if((PercEV(ctr_i)<threshold)&&(PercEV(ctr_i+1)>=threshold)){maxEV=ctr_i;}
}
if(maxEV<3){maxEV=PercEV.Ncols()/2;}
RowVector NewEV;
Matrix temp1;
temp1 = abs(AdjEV);
NewEV << temp1.SubMatrix(1,1,1,maxEV);
AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar());
out1 = AdjEV;
out2 = PercEV;
out3 = NewEV;
out4 = maxEV;
} //adj_eigspec
void adj_eigspec(const RowVector& in, RowVector& out1, RowVector& out2)
{
RowVector AdjEV, PercEV;
AdjEV = in.Reverse();
SortDescending(AdjEV);
PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar());
AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar());
out1 = AdjEV;
out2 = PercEV;
} //adj_eigspec
RowVector Feta(int n1, int n2)
{
float nu = (float) n1/n2;
float bm = pow((1-sqrt(nu)),2.0);
float bp = pow((1+sqrt(nu)),2.0);
float lrange = 0.9*bm;
float urange = 1.1*bp;
RowVector eta(30*n1);
float rangestepsize = (urange - lrange) / eta.Ncols();
for(int ctr_i = 1; ctr_i <= eta.Ncols(); ctr_i++){
eta(ctr_i) = lrange + rangestepsize * (ctr_i);
}
RowVector teta(10*n1);
teta = 0;
float stepsize = (bp - bm) / teta.Ncols();
for(int ctr_i = 1; ctr_i <= teta.Ncols(); ctr_i++){
teta(ctr_i) = stepsize*(ctr_i);
}
RowVector feta(teta);
feta = SP(pow(2*M_PI*nu*(teta + bm),-1), pow(SP(teta, bp-bm-teta),0.5));
teta = teta + bm;
RowVector claw(eta);
claw = 0;
for(int ctr_i = 1; ctr_i <= eta.Ncols(); ctr_i++){
double tmpval = 0.0;
for(int ctr_j = 1; ctr_j <= teta.Ncols(); ctr_j++){
if(( double(teta(ctr_j))/double(eta(ctr_i)) )<1)
tmpval += feta(ctr_j);
}
claw(ctr_i) = n1*(1-stepsize*tmpval);
}
RowVector Res(n1); //invert the CDF
Res = 0;
for(int ctr_i = 1; ctr_i < eta.Ncols(); ctr_i++){ //Should this be <= instead of <?
if(floor(claw(ctr_i))>floor(claw(ctr_i+1))){
Res(int(floor(claw(ctr_i)))) = eta(ctr_i);
}
}
return Res;
} //RowVector Feta
RowVector cumsum(const RowVector& Inp)
{
UpperTriangularMatrix UT(Inp.Ncols());
UT=1.0;
RowVector Res;
Res = Inp * UT;
return Res;
} //RowVector cumsum
int ppca_dim(const Matrix& in, const Matrix& weights, Matrix& PPCA, RowVector& AdjEV, RowVector& PercEV, Matrix& Corr, Matrix& tmpE, RowVector &tmpD, float resels, string which)
{
std_pca(in,weights,Corr,tmpE,tmpD);
int maxEV = 1;
RowVector NewEV;
adj_eigspec(tmpD.AsRow(),AdjEV,PercEV,NewEV,maxEV,in.Ncols(),resels);
int res;
PPCA = ppca_est(NewEV, in.Ncols(),resels);
ColumnVector tmp = ppca_select(PPCA, res, maxEV, which);
PPCA = tmp | PPCA;
return res;
} //int ppca_dim
int ppca_dim(const Matrix& in, const Matrix& weights, Matrix& PPCA, RowVector& AdjEV, RowVector& PercEV, float resels, string which)
{
RowVector tmpD;
Matrix tmpE;
Matrix Corr;
int res = ppca_dim(in, weights, PPCA, AdjEV, PercEV, Corr, tmpE, tmpD, resels, which);
return res;
} //int ppca_dim
int ppca_dim(const Matrix& in, const Matrix& weights, float resels, string which)
{
ColumnVector PPCA;
RowVector AdjEV, PercEV;
int res = ppca_dim(in,weights,PPCA,AdjEV,PercEV,resels,which);
return res;
} //int ppca_dim
ColumnVector ppca_select(Matrix& PPCAest, int& dim, int maxEV, string which)
{
RowVector estimators(5);
estimators = 1.0;
for(int ctr=1; ctr<=PPCAest.Ncols(); ctr++){
PPCAest.Column(ctr) = (PPCAest.Column(ctr) -
min(PPCAest.Column(ctr)).AsScalar()) /
( max(PPCAest.Column(ctr)).AsScalar() -
min(PPCAest.Column(ctr)).AsScalar());
}
int ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,2) < PPCAest(ctr_i+1,2))&&(ctr_i<maxEV))
{estimators(1)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,3) < PPCAest(ctr_i+1,3))&&(ctr_i<maxEV))
{estimators(2)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,4) < PPCAest(ctr_i+1,4))&&(ctr_i<maxEV))
{estimators(3)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,5) < PPCAest(ctr_i+1,5))&&(ctr_i<maxEV))
{estimators(4)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,6) < PPCAest(ctr_i+1,6))&&(ctr_i<maxEV))
{estimators(5)=ctr_i+1;ctr_i++;}
int res = 0;
ColumnVector PPCA;
RowVector PercEV(PPCAest.Column(1).t());
PercEV = cumsum(PercEV / sum(PercEV,2).AsScalar());
if(int(estimators(2)) < int(estimators(1)) &&
float(PercEV(int(estimators(2))))>0.8){
if(which == string("lap")){
res = int(estimators(1));
}
if(which == string("bic")){
res = int(estimators(2));
}
if(which == string("mdl")){
res = int(estimators(3));
if(which == string("rrn")){
res = int(estimators(4));
if(which == string("aic")){
res = int(estimators(5));
if(which == string("median")){
RowVector unsorted(estimators);
SortAscending(unsorted);
ctr_i=1;
res=int(unsorted(3));
while(res != int(estimators(ctr_i)))
ctr_i++;
}
if(res==0 || which == string("mean")){//median estimator
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
}
dim = res;
return PPCA;
} //RowVector ppca_select
Matrix ppca_est(const RowVector& eigenvalues, const int N1, const float N2)
{
Matrix Res;
Res = ppca_est(eigenvalues, (int) floor(N1/(2.5*N2)));
return Res;
} //Matrix ppca_est
Matrix ppca_est(const RowVector& eigenvalues, const int N)
{
RowVector logLambda(eigenvalues);
logLambda = log(eigenvalues);
int d = logLambda.Ncols();
RowVector k(d);
for(int ctr_i = 1; ctr_i <=d; ctr_i++){
k(ctr_i)=ctr_i;
}
RowVector m(d);
m=d*k-0.5*SP(k,k+1);
RowVector loggam(d);
loggam = 0.5*k.Reverse();
for(int ctr_i = 1; ctr_i <=d; ctr_i++){
loggam(ctr_i)=lgam(loggam(ctr_i));
}
loggam = cumsum(loggam);
RowVector l_probU(d);
l_probU = -log(2)*k + loggam - cumsum(0.5*log(M_PI)*k.Reverse());
RowVector tmp1;
tmp1 = -cumsum(eigenvalues).Reverse()+sum(eigenvalues,2).AsScalar();
tmp1(1) = 0.95*tmp1(2);
tmp1=tmp1.Reverse();
RowVector tmp2;
tmp2 = -cumsum(logLambda).Reverse()+sum(logLambda,2).AsScalar();
tmp2(1)=tmp2(2);
tmp2=tmp2.Reverse();
RowVector tmp3;
tmp3 = d-k;
tmp3(d) = 1.0;
RowVector tmp4;
tmp4 = SP(tmp1,pow(tmp3,-1));
for(int ctr_i = 1; ctr_i <=d; ctr_i++){
if(tmp4(ctr_i)<0.01){tmp4(ctr_i)=0.01;}
if(tmp3(ctr_i)<0.01){tmp3(ctr_i)=0.01;}
if(tmp1(ctr_i)<0.01){tmp1(ctr_i)=0.01;}
}
RowVector l_nu;
l_nu = SP(-N/2*(d-k),log(tmp4));
l_nu(d) = 0;
RowVector l_lam;
l_lam = -(N/2)*cumsum(logLambda);
RowVector l_lhood;
l_lhood = SP(pow(tmp3,-1),tmp2)-log(SP(pow(tmp3,-1),tmp1));
Matrix t1,t2, t3;
UpperTriangularMatrix triu(d);
triu = 1.0;
for(int ctr_i = 1; ctr_i <= triu.Ncols(); ctr_i++){
triu(ctr_i,ctr_i)=0.0;
}
t1 = (ones(d,1) * eigenvalues);
t1 = SP(triu,t1.t() - t1);
t2 = pow(tmp4,-1).t()*ones(1,d);
t3 = ones(d,1)*pow(eigenvalues,-1);
t2 = SP(triu, t2.t()-t3.t());
for(int ctr_i = 1; ctr_i <= t1.Ncols(); ctr_i++){
for(int ctr_j = 1; ctr_j <= t1.Nrows(); ctr_j++){
if(t1(ctr_j,ctr_i)<=0){t1(ctr_j,ctr_i)=1;}
}
}
for(int ctr_i = 1; ctr_i <= t2.Ncols(); ctr_i++){
for(int ctr_j = 1; ctr_j <= t2.Nrows(); ctr_j++){
if(t2(ctr_j,ctr_i)<=0){t2(ctr_j,ctr_i)=1;}
}
}
t1 = cumsum(sum(log(t1),2).AsRow());
t2 = cumsum(sum(log(t2),2).AsRow());
RowVector l_Az(d);
l_Az << (t1+t2);
RowVector l_lap;
l_lap = l_probU + l_nu +l_Az + l_lam + 0.5*log(2*M_PI)*(m+k)-0.5*log(N)*k;
RowVector l_BIC;
l_BIC = l_lam + l_nu - 0.5*log(N)*(m+k);
RowVector l_RRN;
l_RRN = -0.5*N*SP(k,log(SP(cumsum(eigenvalues),pow(k,-1))))+l_nu;
RowVector l_AIC;
l_AIC = -2*N*SP(tmp3,l_lhood)+ 2*(1+d*k+0.5*(k-1));
l_AIC = -l_AIC;
RowVector l_MDL;
l_MDL = -N*SP(tmp3,l_lhood)+ 0.5*(1+d*k+0.5*(k-1))*log(N);
l_MDL = -l_MDL;
Matrix Res;
Res = eigenvalues.t();
Res |= l_lap.t();
Res |= l_BIC.t();
Res |= l_MDL.t();
Res |= l_RRN.t();
Res |= l_AIC.t();
return Res;
} //Matrix ppca_est
ColumnVector acf(const ColumnVector& in, int order)
{
double meanval;
meanval = mean(in).AsScalar();
int tpoints = in.Nrows();
ColumnVector y, res;
Matrix X, tmp;
y = in.Rows(order+1,tpoints) - meanval;
X = zeros(order + 1, order);
for(int ctr1 = 1; ctr1 <= order; ctr1++)
X.Column(ctr1) = in.Rows(order + 1 - ctr1, tpoints - ctr1) - meanval;
tmp = X.t()*X;
tmp = tmp.i();
tmp = tmp * X.t();
res << tmp * y;
return res;
} //ColumnVector acf
ColumnVector pacf(const ColumnVector& in, int maxorder)
{
int tpoint = in.Nrows();
ColumnVector res;
res = acf(in, maxorder);
for(int ctr1 = 1; ctr1 <= maxorder; ctr1++)
if ( res.Column(ctr1).AsScalar() < (1/tpoint) + 2/(float)std::pow(tpoint,0.5))
res.Column(ctr1) = 0;
return res;
} //ColumnVector pacf
Matrix est_ar(const Matrix& Mat, int maxorder)
{
Matrix res;
res = zeros(maxorder, Mat.Ncols());
ColumnVector tmp;
for (int ctr = 1; ctr <= Mat.Ncols(); ctr++){
tmp = pacf(Mat.Column(ctr));
res.Column(ctr) = tmp;
}
return res;
} //Matrix est_ar
ColumnVector gen_ar(const ColumnVector& in, int maxorder)
{
float sdev;
sdev = stdev(in).AsScalar();
ColumnVector x, arcoeff, scaled;
scaled = in / sdev;
arcoeff = pacf( scaled, maxorder);
x = normrnd(in.Nrows(),1).AsColumn() * sdev;
for(int ctr1=2; ctr1 <= in.Nrows(); ctr1++)
for(int ctr2 = 1; ctr2 <= maxorder; ctr2++)
x(ctr1) = arcoeff(ctr2) * x(std::max(1,int(ctr1-ctr2))) + x(ctr1);
return x;
} //ColumnVector gen_ar
Matrix gen_ar(const Matrix& in, int maxorder)
{
Matrix res;
res = in;
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
res.Column(ctr) = gen_ar(tmp, maxorder);
}
return res;
} //Matrix gen_ar
Matrix gen_arCorr(const Matrix& in, int maxorder)
{
Matrix res;
res = zeros(in.Nrows(), in.Nrows());
ColumnVector tmp;
for(int ctr=1; ctr<= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = gen_ar(tmp, maxorder);
res += tmp * tmp.t();
}
return res;
} //Matrix gen_arCorr
void basicGLM::olsfit(const Matrix& data, const Matrix& design,
{
beta = zeros(design.Ncols(),1);
residu = zeros(1); sigsq = -1.0*ones(1); varcb = -1.0*ones(1);
t = zeros(1); z = zeros(1); p=-1.0*ones(1);
dof = (int)-1; cbeta = -1.0*ones(1);
if(data.Nrows()==design.Nrows()){
Matrix tmp = design.t()*design;
Matrix pinvdes = tmp.i()*design.t();
beta = pinvdes * dat;
residu = dat - design*beta;
dof = ols_dof(design);
if ( requestedDOF>0)
dof = requestedDOF;
f_fmf = SP(sum(SP(design*beta,design*beta)),pow(sum(SP(residu,residu)),-1)) * fact;
pf_fmf(1,ctr1) = 1.0-MISCMATHS::fdtr(design.Ncols(),dof,f_fmf.Column(ctr1).AsScalar());
if(contrasts.Storage()>0 && contrasts.Ncols()==beta.Nrows()){
cbeta = contrasts*beta;
Matrix tmp = contrasts*pinvdes*pinvdes.t()*contrasts.t();
varcb = diag(tmp)*sigsq;
t = SP(cbeta,pow(varcb,-0.5));
z = t; p=t;
for(int ctr1=1;ctr1<=t.Ncols();ctr1++){
ColumnVector tmp = t.Column(ctr1);
T2z::ComputeZStats(varcb.Column(ctr1),cbeta.Column(ctr1),dof, tmp);
z.Column(ctr1) << tmp;
T2z::ComputePs(varcb.Column(ctr1),cbeta.Column(ctr1),dof, tmp);
p.Column(ctr1) << exp(tmp);
}
}
}