Newer
Older
b = dot(x0,z)/sz;
c = dot(y0,z)/sz;
params(7) = sx; params(8) = sy; params(9) = sz;
Matrix scales(3,3);
float diagvals[] = {sx,sy,sz};
diag(scales,diagvals);
Real skewvals[] = {1,a,b,0 , 0,1,c,0 , 0,0,1,0 , 0,0,0,1};
Matrix skew(4,4);
skew << skewvals;
params(10) = a; params(11) = b; params(12) = c;
Matrix rotmat(3,3);
rotmat = aff3 * scales.i() * (skew.SubMatrix(1,3,1,3)).i();
ColumnVector transl(3);
transl = affmat.SubMatrix(1,3,1,3)*centre + affmat.SubMatrix(1,3,4,4)
- centre;
for (int i=1; i<=3; i++) { params(i+3) = transl(i); }
ColumnVector rotparams(3);
(*rotmat2params)(rotparams,rotmat);
Mark Jenkinson
committed
for (int i=1; i<=3; i++) { params(i) = rotparams(i); }
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
return 0;
}
int decompose_aff(ColumnVector& params, const Matrix& affmat,
int (*rotmat2params)(ColumnVector& , const Matrix& ))
{
Tracer tr("decompose_aff");
ColumnVector centre(3);
centre = 0.0;
return decompose_aff(params,affmat,centre,rotmat2params);
}
int compose_aff(const ColumnVector& params, int n, const ColumnVector& centre,
Matrix& aff,
int (*params2rotmat)(const ColumnVector& , int , Matrix& ,
const ColumnVector& ) )
{
Tracer tr("compose_aff");
if (n<=0) return 0;
// order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
// angles are in radians
(*params2rotmat)(params,n,aff,centre);
if (n<=6) return 0;
if (n>=7) {
scale(1,1)=params(7);
if (n>=8) scale(2,2)=params(8);
else scale(2,2)=params(7);
if (n>=9) scale(3,3)=params(9);
else scale(3,3)=params(7);
}
// fix the translation so that the centre is not moved
ColumnVector strans(3);
strans = centre - scale.SubMatrix(1,3,1,3)*centre;
scale.SubMatrix(1,3,4,4) = strans;
if (n>=10) {
if (n>=10) skew(1,2)=params(10);
if (n>=11) skew(1,3)=params(11);
if (n>=12) skew(2,3)=params(12);
}
// fix the translation so that the centre is not moved
ColumnVector ktrans(3);
ktrans = centre - skew.SubMatrix(1,3,1,3)*centre;
skew.SubMatrix(1,3,4,4) = ktrans;
aff = aff * skew * scale;
return 0;
}
float rms_deviation(const Matrix& affmat1, const Matrix& affmat2,
const ColumnVector& centre, const float rmax)
{
Tracer trcr("rms_deviation");
Mark Jenkinson
committed
Matrix isodiff(4,4), a1(4,4), a2(4,4);
if ((affmat1.Nrows()==4) && (affmat1.Ncols()==4)) { a1=affmat1; }
else if ((affmat1.Nrows()==3) && (affmat1.Ncols()==3)) { a1=IdentityMatrix(4); a1.SubMatrix(1,3,1,3)=affmat1; }
Mark Jenkinson
committed
else { cerr << "ERROR:: Can only calculate RMS deviation for 4x4 or 3x3 matrices" << endl; exit(-5); }
if ((affmat2.Nrows()==4) && (affmat2.Ncols()==4)) { a2=affmat2; }
else if ((affmat2.Nrows()==3) && (affmat2.Ncols()==3)) { a2=IdentityMatrix(4); a2.SubMatrix(1,3,1,3)=affmat2; }
Mark Jenkinson
committed
else { cerr << "ERROR:: Can only calculate RMS deviation for 4x4 or 3x3 matrices" << endl; exit(-5); }
Mark Jenkinson
committed
isodiff = a1*a2.i() - IdentityMatrix(4);
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
} catch(...) {
cerr << "RMS_DEVIATION ERROR:: Could not invert matrix" << endl;
exit(-5);
}
Matrix adiff(3,3);
adiff = isodiff.SubMatrix(1,3,1,3);
ColumnVector tr(3);
tr = isodiff.SubMatrix(1,3,4,4) + adiff*centre;
float rms = std::sqrt( (tr.t() * tr).AsScalar() +
(rmax*rmax/5.0)*Trace(adiff.t()*adiff) );
return rms;
}
float rms_deviation(const Matrix& affmat1, const Matrix& affmat2,
const float rmax)
{
ColumnVector centre(3);
centre = 0;
return rms_deviation(affmat1,affmat2,centre,rmax);
}
// helper function - calls nifti, but with FSL default case
Mark Jenkinson
committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
Matrix Mat44ToNewmat(mat44 m)
{
Matrix r(4,4);
for(unsigned short i = 0; i < 4; ++i)
for(unsigned short j = 0; j < 4; ++j)
r(i+1, j+1) = m.m[i][j];
return r;
}
mat44 NewmatToMat44(const Matrix& m)
{
mat44 r;
for(unsigned short i = 0; i < 4; ++i)
for(unsigned short j = 0; j < 4; ++j)
r.m[i][j] = m(i+1, j+1);
return r;
}
void get_axis_orientations(const Matrix& sform_mat, int sform_code,
const Matrix& qform_mat, int qform_code,
int& icode, int& jcode, int& kcode)
Matrix vox2mm(4,4);
if (sform_code!=NIFTI_XFORM_UNKNOWN) {
vox2mm = sform_mat;
} else if (qform_code!=NIFTI_XFORM_UNKNOWN) {
vox2mm = qform_mat;
} else {
// ideally should be sampling_mat(), but for orientation it doesn't matter
mat44 v2mm;
for (int ii=0; ii<4; ii++) { for (int jj=0; jj<4; jj++) {
v2mm.m[ii][jj] = vox2mm(ii+1,jj+1);
} }
nifti_mat44_to_orientation(v2mm,&icode,&jcode,&kcode);
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
Matrix mat44_to_newmat(mat44 inmat)
{
Matrix retmat(4,4);
for (int ii=0; ii<4; ii++) {
for (int jj=0; jj<4; jj++) {
retmat(ii+1,jj+1) = inmat.m[ii][jj];
}
}
return retmat;
}
mat44 newmat_to_mat44(const Matrix& inmat)
{
mat44 retmat;
for (int ii=0; ii<4; ii++) {
for (int jj=0; jj<4; jj++) {
retmat.m[ii][jj] = inmat(ii+1,jj+1);
}
}
return retmat;
}
// Matlab style functions for percentiles, quantiles and median
// AUG 06 CB
{
}
float interp1(const ColumnVector& x, const ColumnVector& y, float xi)
// Look-up function for data table defined by x, y
// Returns the values yi at xi using linear interpolation
// Assumes that x is sorted in ascending order
{
float ans;
if(xi >= x.Maximum())
ans = y(x.Nrows());
else
if(xi <= x.Minimum())
ans = y(1);
else{
int ind=2;
while(xi >= x(ind)) { ind++; }
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
float xa = x(ind-1), xb = x(ind), ya = y(ind-1), yb = y(ind);
ans = ya + (xi - xa)/(xb - xa) * (yb - ya);
}
return ans;
}
float quantile(const ColumnVector& in, int which)
{
float p;
switch (which)
{
case 0 : p = 0.0; break;
case 1 : p = 25.0; break;
case 2 : p = 50.0; break;
case 3 : p = 75.0; break;
case 4 : p =100.0; break;
default: p = 0.0;
}
return percentile(in,p);
}
float percentile(const ColumnVector& in, float p)
{
ColumnVector y = in;
int num = y.Nrows();
ColumnVector xx,yy,sequence,a(1),b(1),c(1),d(1);
sequence = 100*(seq(num)-0.5)/num; a << y(1); b << y(num); c = 0; d = 100;
xx = (c & sequence & d);
yy = (a & y & b);
return interp1(xx,yy,p);
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
ReturnMatrix quantile(const Matrix& in, int which)
{
int num = in.Ncols();
Matrix res(1,num);
for (int ctr=1; ctr<=num; ctr++){
ColumnVector tmp = in.Column(ctr);
res(1,ctr) = quantile(tmp,which);
}
res.Release();
return res;
}
ReturnMatrix percentile(const Matrix& in, float p)
{
int num = in.Ncols();
Matrix res(1,num);
for (int ctr=1; ctr<=num; ctr++){
ColumnVector tmp = in.Column(ctr);
res(1,ctr) = percentile(tmp,p);
}
res.Release();
return res;
}
void cart2sph(const ColumnVector& dir, float& th, float& ph)
Mark Jenkinson
committed
float mag=sqrt(dir(1)*dir(1)+dir(2)*dir(2)+dir(3)*dir(3));
if(mag==0){
ph=M_PI/2;
th=M_PI/2;
}
else{
if(dir(1)==0 && dir(2)>=0) ph=M_PI/2;
else if(dir(1)==0 && dir(2)<0) ph=-M_PI/2;
Mark Jenkinson
committed
else if(dir(1)>0) ph=atan(dir(2)/dir(1));
else if(dir(2)>0) ph=atan(dir(2)/dir(1))+M_PI;
else ph=atan(dir(2)/dir(1))-M_PI;
Mark Jenkinson
committed
else if(dir(3)>0) th=atan(sqrt(dir(1)*dir(1)+dir(2)*dir(2))/dir(3));
else th=atan(sqrt(dir(1)*dir(1)+dir(2)*dir(2))/dir(3))+M_PI;
}
}
void cart2sph(const Matrix& dir,ColumnVector& th,ColumnVector& ph)
{
if(th.Nrows()!=dir.Ncols()){
th.ReSize(dir.Ncols());
}
if(ph.Nrows()!=dir.Ncols()){
ph.ReSize(dir.Ncols());
}
Mark Jenkinson
committed
float mag=sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i)+dir(3,i)*dir(3,i));
if(mag==0){
ph(i)=M_PI/2;
th(i)=M_PI/2;
}
else{
if(dir(1,i)==0 && dir(2,i)>=0) ph(i)=M_PI/2;
else if(dir(1,i)==0 && dir(2,i)<0) ph(i)=-M_PI/2;
Mark Jenkinson
committed
else if(dir(1,i)>0) ph(i)=atan(dir(2,i)/dir(1,i));
else if(dir(2,i)>0) ph(i)=atan(dir(2,i)/dir(1,i))+M_PI;
else ph(i)=atan(dir(2,i)/dir(1,i))-M_PI;
Mark Jenkinson
committed
else if(dir(3,i)>0) th(i)=atan(sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i))/dir(3,i));
else th(i)=atan(sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i))/dir(3,i))+M_PI;
// added by SJ
void cart2sph(const vector<ColumnVector>& dir,ColumnVector& th,ColumnVector& ph)
{
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
ph.ReSize(dir.size());
}
//double _2pi=2*M_PI;
double _pi2=M_PI/2;
int j=1;
for (unsigned int i=0;i<dir.size();i++) {
float mag=std::sqrt(dir[i](1)*dir[i](1)+dir[i](2)*dir[i](2)+dir[i](3)*dir[i](3));
if(mag==0){
ph(j)=_pi2;
th(j)=_pi2;
}
else{
if(dir[i](1)==0 && dir[i](2)>=0) ph(j)=_pi2;
else if(dir[i](1)==0 && dir[i](2)<0) ph(j)=-_pi2;
else if(dir[i](1)>0) ph(j)=std::atan(dir[i](2)/dir[i](1));
else if(dir[i](2)>0) ph(j)=std::atan(dir[i](2)/dir[i](1))+M_PI;
else ph(j)=std::atan(dir[i](2)/dir[i](1))-M_PI;
//ph(j)=fmod(ph(j),_2pi);
if(dir[i](3)==0) th(j)=_pi2;
else if(dir[i](3)>0) th(j)=std::atan(std::sqrt(dir[i](1)*dir[i](1)+dir[i](2)*dir[i](2))/dir[i](3));
else th(j)=std::atan(std::sqrt(dir[i](1)*dir[i](1)+dir[i](2)*dir[i](2))/dir[i](3))+M_PI;
//th(j)=fmod(th(j),M_PI);
}
j++;
}
}
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
// Added by CFB --- Matlab style Matrix functions
ReturnMatrix ones(const int dim1, const int dim2)
{
int tdim = dim2;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim); res = 1.0;
res.Release();
return res;
}
ReturnMatrix zeros(const int dim1, const int dim2)
{
int tdim = dim2;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim); res = 0.0;
res.Release();
return res;
}
ReturnMatrix repmat(const Matrix &mat, const int rows, const int cols)
{
Matrix res = mat;
for(int ctr = 1; ctr < cols; ctr++){res |= mat;}
Matrix tmpres = res;
Mark Jenkinson
committed
for(int ctr = 1; ctr < rows; ctr++){res &= tmpres;}
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
res.Release();
return res;
}
ReturnMatrix dist2(const Matrix &mat1, const Matrix &mat2)
{
Matrix res(mat1.Ncols(),mat2.Ncols());
for(int ctr1 = 1; ctr1 <= mat1.Ncols(); ctr1++)
for(int ctr2 =1; ctr2 <= mat2.Ncols(); ctr2++)
{
ColumnVector tmp;
tmp=mat1.Column(ctr1)-mat2.Column(ctr2);
res(ctr1,ctr2) = std::sqrt(tmp.SumSquare());
}
res.Release();
return res;
}
ReturnMatrix abs(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::abs(res(mr,mc));
}
}
res.Release();
return res;
}
void abs_econ(Matrix& mat)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::abs(mat(mr,mc));
}
}
}
ReturnMatrix sqrt(const Matrix& mat)
{
Matrix res = mat;
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(res(mr,mc)<0){ neg_flag = true; }
res(mr,mc)=std::sqrt(std::abs(res(mr,mc)));
}
}
if(neg_flag){
//cerr << " Matrix contained negative elements" << endl;
//cerr << " return sqrt(abs(X)) instead" << endl;
}
res.Release();
return res;
}
void sqrt_econ(Matrix& mat)
{
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(mat(mr,mc)<0){ neg_flag = true; }
mat(mr,mc)=std::sqrt(std::abs(mat(mr,mc)));
}
}
if(neg_flag){
//cerr << " Matrix contained negative elements" << endl;
//cerr << " return sqrt(abs(X)) instead" << endl;
}
}
ReturnMatrix sqrtm(const Matrix& mat)
{
Matrix res, tmpU, tmpV;
DiagonalMatrix tmpD;
SVD(mat, tmpD, tmpU, tmpV);
res = tmpU*sqrt(tmpD)*tmpV.t();
res.Release();
return res;
}
ReturnMatrix log(const Matrix& mat)
{
Matrix res = mat;
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(res(mr,mc)<0){ neg_flag = true; }
res(mr,mc)=std::log(std::abs(res(mr,mc)));
}
}
if(neg_flag){
// cerr << " Matrix contained negative elements" << endl;
// cerr << " return log(abs(X)) instead" << endl;
}
res.Release();
return res;
}
void log_econ(Matrix& mat)
{
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(mat(mr,mc)<0){ neg_flag = true; }
mat(mr,mc)=std::log(std::abs(mat(mr,mc)));
}
}
if(neg_flag){
// cerr << " Matrix contained negative elements" << endl;
// cerr << " return log(abs(X)) instead" << endl;
}
}
ReturnMatrix exp(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::exp(res(mr,mc));
}
}
res.Release();
return res;
}
void exp_econ(Matrix& mat)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::exp(mat(mr,mc));
}
}
}
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
// optimised code for calculating matrix exponential
ReturnMatrix expm(const Matrix& mat){
float nmat = sum(mat).Maximum();
int nc=mat.Ncols(),nr=mat.Nrows();
Matrix res(nr,nc);
IdentityMatrix id(nr);
Matrix U(nr,nc),V(nr,nc);
if(nmat <= 1.495585217958292e-002){ // m=3
Matrix mat2(nr,nc);
mat2=mat*mat;
U = mat*(mat2+60.0*id);
V = 12.0*mat2+120.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 2.539398330063230e-001){ // m=5
Matrix mat2(nr,nc),mat4(nr,nc);
mat2=mat*mat;mat4=mat2*mat2;
U = mat*(mat4+420.0*mat2+15120.0*id);
V = 30.0*mat4+3360.0*mat2+30240.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 9.504178996162932e-001){ // m=7
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc);
mat2=mat*mat;mat4=mat2*mat2,mat6=mat4*mat2;
U = mat*(mat6+1512.0*mat4+277200.0*mat2+8648640.0*id);
V = 56.0*mat6+25200.0*mat4+1995840.0*mat2+17297280.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 2.097847961257068e+000){
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc),mat8(nr,nc);
mat2=mat*mat;mat4=mat2*mat2,mat6=mat4*mat2,mat8=mat6*mat2;
U = mat*(mat8+3960.0*mat6+2162160.0*mat4+302702400.0*mat2+8821612800.0*id);
V = 90.0*mat8+110880.0*mat6+30270240.0*mat4+2075673600.0*mat2+17643225600.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 5.371920351148152e+000){
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc);
mat2=mat*mat;mat4=mat2*mat2,mat6=mat4*mat2;
U = mat*(mat6*(mat6+16380.0*mat4+40840800.0*mat2)+
+33522128640.0*mat6+10559470521600.0*mat4+1187353796428800.0*mat2+32382376266240000.0*id);
V = mat6*(182.0*mat6+960960.0*mat4+1323241920.0*mat2)
+ 670442572800.0*mat6+129060195264000.0*mat4+7771770303897600.0*mat2+64764752532480000.0*id;
res = (-U+V).i()*(U+V);
}
else{
double t;int s;
t = frexp(nmat/5.371920351148152,&s);
if(t==0.5) s--;
t = std::pow(2.0,s);
res = (mat/t);
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc);
mat2=res*res;mat4=mat2*mat2,mat6=mat4*mat2;
U = res*(mat6*(mat6+16380*mat4+40840800*mat2)+
+33522128640.0*mat6+10559470521600.0*mat4+1187353796428800.0*mat2+32382376266240000.0*id);
V = mat6*(182.0*mat6+960960.0*mat4+1323241920.0*mat2)
+ 670442572800.0*mat6+129060195264000.0*mat4+7771770303897600.0*mat2+64764752532480000.0*id;
res = (-U+V).i()*(U+V);
for(int i=1;i<=s;i++)
res = res*res;
}
res.Release();
return res;
}
ReturnMatrix tanh(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::tanh(res(mr,mc));
}
}
res.Release();
return res;
}
void tanh_econ(Matrix& mat)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::tanh(mat(mr,mc));
}
}
}
ReturnMatrix pow(const Matrix& mat, const double exp)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::pow(res(mr,mc),exp);
}
}
res.Release();
return res;
}
void pow_econ(Matrix& mat, const double exp)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::pow(mat(mr,mc),exp);
}
}
}
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
ReturnMatrix max(const Matrix& mat)
{
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)>res(1,mc)){res(1,mc)=mat(mr,mc);}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)>res(1,1)){res(1,1)=mat(1,mc);}
}
}
res.Release();
return res;
}
ReturnMatrix max(const Matrix& mat,ColumnVector& index)
{
index.ReSize(mat.Nrows());
index=1;
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)>res(1,mc))
{
res(1,mc)=mat(mr,mc);
index(mr)=mc;
}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)>res(1,1))
{
res(1,1)=mat(1,mc);
index(1)=mc;
}
}
}
res.Release();
return res;
}
ReturnMatrix min(const Matrix& mat)
{
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)<res(1,mc)){res(1,mc)=mat(mr,mc);}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)<res(1,1)){res(1,1)=mat(1,mc);}
}
}
res.Release();
return res;
}
ReturnMatrix sum(const Matrix& mat, const int dim)
{
Matrix res;
if (dim == 1){
res = zeros(1,mat.Ncols());
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += mat(mr,mc);
}
}
}
else{
res = zeros(mat.Nrows(),1);
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += mat(mr,mc);
}
}
}
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
ReturnMatrix mean(const Matrix& mat, const RowVector& weights, const int dim) //weights are considered to be in the "direction" of dim and normalised to sum 1
{
Matrix res;
if (dim == 1){
res = zeros(1,mat.Ncols());
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += weights(mr)*mat(mr,mc);
}
}
}
else{
res = zeros(mat.Nrows(),1);
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += weights(mc)*mat(mr,mc);
}
}
}
res.Release();
return res;
}
ReturnMatrix mean(const Matrix& mat, const int dim)
{
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
Matrix res;
int N;
if (dim == 1){
res = zeros(1,mat.Ncols());
N = mat.Nrows();
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += mat(mr,mc)/N;
}
}
}
else{
res = zeros(mat.Nrows(),1);
N = mat.Ncols();
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += mat(mr,mc)/N;
}
}
}
res.Release();
return res;
ReturnMatrix var(const Matrix& mat, const int dim)
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
{
Matrix res, matmean;
matmean = mean(mat,dim);
int N;
if (dim == 1){
res = zeros(1,mat.Ncols());
N = mat.Nrows();
if(N>1){
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += (mat(mr,mc) - matmean(1,mc)) * (mat(mr,mc) - matmean(1,mc))/(N-1);
}
}
}
}
else{
res = zeros(mat.Nrows(),1);
N = mat.Ncols();
if(N>1){
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += (mat(mr,mc) -matmean(mr,1))* (mat(mr,mc)-matmean(mr,1))/(N-1);
}
}
}
}
res.Release();
return res;
}
ReturnMatrix stdev(const Matrix& mat, const int dim)
{
return sqrt(var(mat,dim));
}
ReturnMatrix gt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) > mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix lt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) < mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix geqt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) >= mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix geqt(const Matrix& mat,const float a)
{
int ncols = mat.Ncols();
int nrows = mat.Nrows();
Matrix res(nrows,ncols);
res=0.0;
for (int ctr1 = 1; ctr1 <= nrows; ctr1++) {
for (int ctr2 =1; ctr2 <= ncols; ctr2++) {
if( mat(ctr1,ctr2) >= a){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix leqt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) <= mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix eq(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) == mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix neq(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) != mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
ReturnMatrix SD(const Matrix& mat1,const Matrix& mat2)
{
if((mat1.Nrows() != mat2.Nrows()) ||
(mat1.Ncols() != mat2.Ncols()) ){
cerr <<"MISCMATHS::SD - matrices are of different dimensions"<<endl;
exit(-1);
}
Matrix ret(mat1.Nrows(),mat1.Ncols());
for (int r = 1; r <= mat1.Nrows(); r++) {
for (int c =1; c <= mat1.Ncols(); c++) {
if( mat2(r,c)==0)
ret(r,c)=0;
else
ret(r,c) = mat1(r,c)/mat2(r,c);
}
}
ret.Release();
return ret;
}
void SD_econ(Matrix& mat1,const Matrix& mat2)
{
if((mat1.Nrows() != mat2.Nrows()) ||
(mat1.Ncols() != mat2.Ncols()) ){
cerr <<"MISCMATHS::SD - matrices are of different dimensions"<<endl;
exit(-1);
}
for (int r = 1; r <= mat1.Nrows(); r++) {
for (int c =1; c <= mat1.Ncols(); c++) {
if( mat2(r,c)==0)
mat1(r,c)=0;
else
mat1(r,c) = mat1(r,c)/mat2(r,c);