Newer
Older
Mark Jenkinson, Mark Woolrich, Christian Beckmann, Tim Behrens and Matthew Webster, FMRIB Image Analysis Group
Copyright (C) 1999-2009 University of Oxford */
/* CCOPYRIGHT */
// Miscellaneous maths functions
#define NOMINMAX
#include <cstdlib>
#include <cmath>
#include "newmatio.h"
Mark Jenkinson
committed
using namespace std;
namespace MISCMATHS {
// The following lines are ignored by the current SGI compiler
// (version egcs-2.91.57)
// A temporary fix of including the std:: in front of all abs() etc
// has been done for now
using std::abs;
using std::sqrt;
using std::exp;
using std::log;
// using std::pow;
using std::atan2;
Mark Jenkinson
committed
string size(const Matrix& mat)
{
string str = num2str(mat.Nrows())+"*"+num2str(mat.Ncols());
return str;
}
float Sinc(const float x) {
if (fabs(x)<1e-9) {
return 1-x*x*M_PI*M_PI/6.0;
} else {
return sin(M_PI*x)/(M_PI*x);
}
}
double Sinc(const double x) {
if (fabs(x)<1e-9) {
return 1-x*x*M_PI*M_PI/6.0;
} else {
return sin(M_PI*x)/(M_PI*x);
}
}
if (input.size()==0) return false;
char *pend;
strtod(input.c_str(),&pend);
if (*pend!='\0') return false;
return true;
}
Mark Jenkinson
committed
// Use this to skip all lines that contain non-numeric entries, and return the first line starting with a number
// and the file pointer is reset to the beginning of the first line that starts with a number
string skip_alpha(ifstream& fs)
{
string cline;
while (!fs.eof()) {
Mark Jenkinson
committed
streampos curpos = fs.tellg();
Mark Jenkinson
committed
// read a line, then turn it into a stream in order to read out the first token
Mark Jenkinson
committed
cline += " "; // force extra entry in parsing (ensure at least one token is read)
istringstream ss(cline.c_str());
Mark Jenkinson
committed
ss >> firstToken; // Put first non-whitespace sequence into firstToken
Mark Jenkinson
committed
if (fs.eof()) { fs.clear(); } // should only be executed if the file had no valid line terminators
fs.seekg(curpos);
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
return cline;
}
}
return "";
}
ReturnMatrix read_ascii_matrix(int nrows, int ncols, const string& filename)
{
return read_ascii_matrix(filename,nrows,ncols);
}
ReturnMatrix read_ascii_matrix(const string& filename, int nrows, int ncols)
{
Matrix mat(nrows,ncols);
mat = 0.0;
if ( filename.size()<1 ) return mat;
ifstream fs(filename.c_str());
if (!fs) {
cerr << "Could not open matrix file " << filename << endl;
return mat;
}
mat = read_ascii_matrix(fs,nrows,ncols);
fs.close();
mat.Release();
return mat;
}
ReturnMatrix read_ascii_matrix(int nrows, int ncols, ifstream& fs)
{
return read_ascii_matrix(fs, nrows, ncols);
}
ReturnMatrix read_ascii_matrix(ifstream& fs, int nrows, int ncols)
{
Matrix mat(nrows,ncols);
mat = 0.0;
string ss="";
Mark Jenkinson
committed
double newnum;
ss = skip_alpha(fs);
for (int r=1; r<=nrows; r++) {
Mark Jenkinson
committed
istringstream sline(ss.c_str());
Mark Jenkinson
committed
sline >> newnum;
if ( sline.eof() ) {
throw Exception("Could not find enough numbers in matrix file");
Mark Jenkinson
committed
mat(r,c) = newnum;
}
if ( r!=nrows ) {
getline(fs,ss); // this is processed now, so move the stream past it
ss = skip_alpha(fs);
}
}
mat.Release();
return mat;
}
ReturnMatrix read_ascii_matrix(const string& filename)
{
Matrix mat;
if ( filename.size()<1 ) return mat;
ifstream fs(filename.c_str());
if (!fs) {
cerr << "Could not open matrix file " << filename << endl;
mat.Release();
return mat;
}
mat = read_ascii_matrix(fs);
fs.close();
mat.Release();
return mat;
}
ReturnMatrix read_ascii_matrix(ifstream& fs)
{
int nRows(0), nColumns(0);
string currentLine;
// skip initial non-numeric lines
// and count the number of columns in the first numeric line
currentLine = skip_alpha(fs);
currentLine += " ";
istringstream ss(currentLine.c_str());
string dummyToken="";
Mark Jenkinson
committed
// count the number of lines that start with a number (don't worry if they don't have enough numbers at this stage)
Mark Jenkinson
committed
do {
getline(fs,currentLine);
currentLine += " "; // force extra entry in parsing
istringstream ss(currentLine.c_str());
string firstToken("");
ss >> firstToken; //Put first non-whitespace sequence into cc
Mark Jenkinson
committed
if (isNumber(firstToken)) nRows++; // add new row to matrix
Mark Jenkinson
committed
} while (!fs.eof());
Mark Jenkinson
committed
// now know the size of matrix
fs.clear();
fs.seekg(0,ios::beg);
return read_ascii_matrix(fs,nRows,nColumns);
Mark Jenkinson
committed
}
#define BINFLAG 42
ReturnMatrix read_binary_matrix(const string& filename)
Matrix mres;
read_binary_matrix(mres,filename);
mres.Release();
return mres;
}
int read_binary_matrix(Matrix& mres, const string& filename)
{
if ( filename.size()<1 ) return 1;
ifstream fs(filename.c_str(), ios::in | ios::binary);
if (!fs) {
cerr << "Could not open matrix file " << filename << endl;
read_binary_matrix(mres,fs);
}
ReturnMatrix read_binary_matrix(ifstream& fs)
{
Matrix mres;
read_binary_matrix(mres,fs);
mres.Release();
return mres;
}
int read_binary_matrix(Matrix& mres, ifstream& fs)
Mark Jenkinson
committed
bool swapbytes = false;
unsigned int testval;
// test for byte swapping
fs.read((char*)&testval,sizeof(testval));
if (testval!=BINFLAG) {
Mark Jenkinson
committed
swapbytes = true;
Swap_Nbytes(1,sizeof(testval),&testval);
if (testval!=BINFLAG) {
cerr << "Unrecognised binary matrix file format" << endl;
Mark Jenkinson
committed
}
}
// read matrix dimensions (num rows x num cols)
Mark Jenkinson
committed
unsigned int ival,nx,ny;
// ignore the padding (reserved for future use)
fs.read((char*)&ival,sizeof(ival));
Mark Jenkinson
committed
if (swapbytes) Swap_Nbytes(1,sizeof(ival),&ival);
nx = ival;
fs.read((char*)&ival,sizeof(ival));
Mark Jenkinson
committed
if (swapbytes) Swap_Nbytes(1,sizeof(ival),&ival);
ny = ival;
// set up and read matrix (rows fast, cols slow)
Mark Jenkinson
committed
double val;
Mark Jenkinson
committed
if ( (((unsigned int) mres.Ncols())<ny) || (((unsigned int) mres.Nrows())<nx) ) {
mres.ReSize(nx,ny);
}
Mark Jenkinson
committed
for (unsigned int y=1; y<=ny; y++) {
for (unsigned int x=1; x<=nx; x++) {
Mark Jenkinson
committed
if (swapbytes) Swap_Nbytes(1,sizeof(val),&val);
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
}
// WRITE FUNCTIONS //
int write_ascii_matrix(const string& filename, const Matrix& mat,
int precision)
{
return write_ascii_matrix(mat, filename, precision);
}
int write_ascii_matrix(const Matrix& mat, const string& filename,
int precision)
{
Tracer tr("write_ascii_matrix");
if ( (filename.size()<1) ) return -1;
ofstream fs(filename.c_str());
if (!fs) {
cerr << "Could not open file " << filename << " for writing" << endl;
return -1;
}
int retval = write_ascii_matrix(mat,fs,precision);
fs.close();
return retval;
}
int write_ascii_matrix(ofstream& fs, const Matrix& mat,
int precision)
{
return write_ascii_matrix(mat, fs, precision);
}
int write_ascii_matrix(const Matrix& mat, ofstream& fs, int precision)
{
fs.unsetf(ios::floatfield); // use fixed or scientific notation as appropriate
if (precision>0) {
fs.precision(precision);
} else {
fs.precision(10); // default precision
}
#ifdef PPC64
int n=0;
#endif
for (int i=1; i<=mat.Nrows(); i++) {
for (int j=1; j<=mat.Ncols(); j++) {
fs << mat(i,j) << " ";
#ifdef PPC64
if ((n++ % 50) == 0) fs.flush();
#endif
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
}
fs << endl;
}
return 0;
}
int write_vest(string p_fname, const Matrix& x, int precision)
{ return write_vest(x,p_fname,precision); }
int write_vest(const Matrix& x, string p_fname, int precision)
{
ofstream out;
out.open(p_fname.c_str(), ios::out);
if(!out)
{
cerr << "Unable to open " << p_fname << endl;
return -1;
}
out << "! VEST-Waveform File" << endl;
out << "/NumWaves\t" << x.Ncols() << endl;
out << "/NumPoints\t" << x.Nrows() << endl;
out << "/Skip" << endl;
out << endl << "/Matrix" << endl;
int retval = write_ascii_matrix(x, out, precision);
out.close();
return retval;
}
int write_binary_matrix(const Matrix& mat, const string& filename)
{
Tracer tr("write_binary_matrix");
if ( (filename.size()<1) ) return -1;
ofstream fs(filename.c_str(), ios::out | ios::binary);
if (!fs) {
cerr << "Could not open file " << filename << " for writing" << endl;
return -1;
}
int retval = write_binary_matrix(mat,fs);
fs.close();
return retval;
}
int write_binary_matrix(const Matrix& mat, ofstream& fs)
{
Mark Jenkinson
committed
unsigned int ival, nx, ny;
ival = BINFLAG;
fs.write((char*)&ival,sizeof(ival));
ival = 0; // padding (reserved for future use)
fs.write((char*)&ival,sizeof(ival));
ival = mat.Nrows();
fs.write((char*)&ival,sizeof(ival));
ival = mat.Ncols();
fs.write((char*)&ival,sizeof(ival));
nx = mat.Nrows();
ny = mat.Ncols();
Mark Jenkinson
committed
double val;
#ifdef PPC64
int n=0;
#endif
Mark Jenkinson
committed
for (unsigned int y=1; y<=ny; y++) {
for (unsigned int x=1; x<=nx; x++) {
val = mat(x,y);
fs.write((char*)&val,sizeof(val));
#ifdef PPC64
if ((n++ % 50) == 0) fs.flush();
#endif
}
}
return 0;
}
// General mathematical functions
int round(int x) { return x; }
int round(float x)
{
if (x>0.0) return ((int) (x+0.5));
else return ((int) (x-0.5));
}
int round(double x)
{
if (x>0.0) return ((int) (x+0.5));
else return ((int) (x-0.5));
double rounddouble(double x){
return ( floor(x+0.5));
}
int periodicclamp(int x, int x1, int x2)
{
if (x2<x1) return periodicclamp(x,x2,x1);
int d = x2-x1+1;
int xp = x-x1;
if (xp>=0) {
return (xp % d) + x1;
} else {
xp = xp + d + std::abs(xp/d)*d;
assert(xp>0);
return periodicclamp(xp + d + std::abs(xp/d)*d,x1,x2);
}
}
ColumnVector cross(const ColumnVector& a, const ColumnVector& b)
{
Tracer tr("cross");
ColumnVector ans(3);
ans(1) = a(2)*b(3) - a(3)*b(2);
ans(2) = a(3)*b(1) - a(1)*b(3);
ans(3) = a(1)*b(2) - a(2)*b(1);
return ans;
}
ColumnVector cross(const double *a, const double *b)
{
Tracer tr("cross");
ColumnVector a1(3), b1(3);
a1 << a;
b1 << b;
return cross(a1,b1);
}
double norm2(const ColumnVector& x)
{
return std::sqrt(x.SumSquare());
}
double norm2sq(double a, double b, double c)
{
return a*a + b*b + c*c;
}
float norm2sq(float a, float b, float c)
int diag(Matrix& m, const float diagvals[])
{
Tracer tr("diag");
m=0.0;
for (int j=1; j<=m.Nrows(); j++)
m(j,j)=diagvals[j-1];
return 0;
}
int diag(DiagonalMatrix& m, const ColumnVector& diagvals)
{
Tracer tr("diag");
m.ReSize(diagvals.Nrows());
m=0.0;
for (int j=1; j<=diagvals.Nrows(); j++)
m(j)=diagvals(j);
return 0;
}
int diag(Matrix& m, const ColumnVector& diagvals)
{
Tracer tr("diag");
m.ReSize(diagvals.Nrows(),diagvals.Nrows());
m(j,j)=diagvals(j);
return 0;
}
ReturnMatrix diag(const Matrix& Mat)
{
Tracer tr("diag");
if(Mat.Ncols()==1){
Matrix retmat(Mat.Nrows(),Mat.Nrows());
diag(retmat,Mat);
retmat.Release();
return retmat;}
else{
int mindim = Min(Mat.Ncols(),Mat.Nrows());
Matrix retmat(mindim,1);
for(int ctr=1; ctr<=mindim;ctr++){
retmat(ctr,1)=Mat(ctr,ctr);
}
retmat.Release();
return retmat;
}
}
ReturnMatrix pinv(const Matrix& mat2)
// note that the right-pinv(x') = pinv(x).t()
Matrix mat(mat2);
if ( mat2.Ncols() > mat2.Nrows() )
mat=mat.t();
Tracer tr("pinv");
DiagonalMatrix D;
Matrix U, V;
SVD(mat,D,U,V);
float tol;
tol = MaximumAbsoluteValue(D) * Max(mat.Nrows(),mat.Ncols()) * 1e-16;
for (int n=1; n<=D.Nrows(); n++) {
Stephen Smith
committed
if (fabs(D(n,n))>tol) D(n,n) = 1.0/D(n,n);
else D(n,n) = 0.0; // reduce the number of columns because too close to singular
if ( mat2.Ncols() > mat2.Nrows() )
pinv=pinv.t();
int rank(const Matrix& X)
{
// calculates the rank of matrix X
Tracer tr("rank");
DiagonalMatrix eigenvals;
SVD(X,eigenvals);
double tolerance = Max(X.Nrows(),X.Ncols()) * eigenvals.Maximum() * 1e-16;
int therank=0;
for(int i=0; i<eigenvals.Nrows(); i++)
if (eigenvals(i+1)>tolerance)
therank++;
// cout << "tolerance = " << tolerance << "\n" << "eigenvalues = " << eigenvals << "\n" << "rank = " << therank << endl;
return therank;
}
ReturnMatrix sqrtaff(const Matrix& mat)
{
Tracer tr("sqrtaff");
Matrix matnew(4,4), rot, id4;
rot=IdentityMatrix(4);
id4=IdentityMatrix(4);
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
ColumnVector params(12), centre(3), trans(4);
centre = 0.0;
// Quaternion decomposition -> params(1..3) = sin(theta/2)*(unit_axis_vec)
// Want a new quaternion : q = sin(theta/4)*(unit_axis_vec)
// Therefore factor of conversion is: factor = sin(theta/4)/sin(theta/2)
// = 1/(2 * cos(theta/4)) which is calculated below
// NB: t = theta/2
decompose_aff(params,mat,centre,rotmat2quat);
double sint;
sint = std::sqrt(params(1)*params(1) + params(2)*params(2) +
params(3)*params(3));
double t = asin(sint);
double factor = 1.0/(2.0*cos(0.5*t));
params(1) = factor * params(1);
params(2) = factor * params(2);
params(3) = factor * params(3);
params(7) = std::sqrt(params(7));
params(8) = std::sqrt(params(8));
params(9) = std::sqrt(params(9));
params(10) = 0.5*params(10);
params(11) = 0.5*params(11);
params(12) = 0.5*params(12);
construct_rotmat_quat(params,3,rot,centre);
rot(1,4) = 0.0;
rot(2,4) = 0.0;
rot(3,4) = 0.0;
scale(1,1)=params(7);
scale(2,2)=params(8);
scale(3,3)=params(9);
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
skew(1,2)=params(10);
skew(1,3)=params(11);
skew(2,3)=params(12);
trans(1) = params(4);
trans(2) = params(5);
trans(3) = params(6);
trans(4) = 1.0;
// The translation, being independent of the 3x3 submatrix, is
// calculated so that it will be equal for each of the two
// halves of the approximate square root
// (i.e. matnew and mat*matnew.i() have exactly the same translation)
ColumnVector th(4);
th = (mat*scale.i()*skew.i()*rot.i() + id4).SubMatrix(1,3,1,3).i()
* trans.SubMatrix(1,3,1,1);
matnew = rot*skew*scale;
matnew(1,4) = th(1);
matnew(2,4) = th(2);
matnew(3,4) = th(3);
matnew.Release();
return matnew;
}
Mark Jenkinson
committed
bool strict_less_than(pair<double, int> x, pair<double, int> y) { return x.first < y.first; }
vector<int> get_sortindex(const Matrix& vals, const string& mode, int col)
{
// mode is either "new2old" or "old2new"
// return the mapping of old and new indices in the *ascending* sort of vals (from column=col)
int length=vals.Nrows();
vector<pair<double, int> > sortlist(length);
for (int n=0; n<length; n++) {
sortlist[n] = pair<double, int>((double) vals(n+1,col),n+1);
}
Mark Jenkinson
committed
sort(sortlist.begin(),sortlist.end(),strict_less_than); // O(N.log(N))
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
vector<int> idx(length);
for (int n=0; n<length; n++) {
if (mode=="old2new") {
// here idx[n] is the where in the ordered list the old n'th row is mapped to (i.e. idx[n] = rank)
idx[sortlist[n].second-1] = n+1;
} else if (mode=="new2old") {
// here idx[n] is the the old row number of the n'th ordered item (i.e. idx[n] is old row number with rank = n)
idx[n] = sortlist[n].second;
} else {
cerr << "ERROR:: unknown mode in get_sortidx = " << mode << endl;
}
}
return idx;
}
Matrix apply_sortindex(const Matrix& vals, vector<int> sidx, const string& mode)
{
// mode is either "new2old" or "old2new"
// apply the index mapping from get_sortindex to the whole matrix (swapping rows)
Matrix res(vals);
res=0.0;
int ncols=vals.Ncols();
for (unsigned int n=0; n<sidx.size(); n++) {
int row = sidx[n];
if (mode=="old2new") {
res.SubMatrix(row,row,1,ncols)=vals.SubMatrix(n+1,n+1,1,ncols);
} else if (mode=="new2old") {
res.SubMatrix(n+1,n+1,1,ncols)=vals.SubMatrix(row,row,1,ncols);
} else {
cerr << "ERROR:: unknown mode in apply_sortidx = " << mode << endl;
}
}
return res;
}
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
//------------------------------------------------------------------------//
// Handy MATLAB-like functions
void reshape(Matrix& r, const Matrix& m, int nrows, int ncols)
{
Tracer tr("reshape");
if (nrows*ncols != m.Nrows() * m.Ncols() ) {
cerr << "WARNING: cannot reshape " << m.Nrows() << "x"
<< m.Ncols() << " matrix into " << nrows << "x"
<< ncols << endl;
cerr << " Returning original matrix instead" << endl;
r = m;
return;
}
r.ReSize(nrows,ncols);
int rr = 1, rc = 1;
for (int mc=1; mc<=m.Ncols(); mc++) {
for (int mr=1; mr<=m.Nrows(); mr++) {
r(rr,rc) = m(mr,mc);
rr++;
if (rr>nrows) {
rc++;
rr=1;
}
}
}
}
ReturnMatrix reshape(const Matrix& m, int nrows, int ncols)
{
Tracer tr("reshape");
Matrix r;
reshape(r,m,nrows,ncols);
r.Release();
return r;
}
int addrow(Matrix& m, int ncols)
{
if (m.Nrows()==0) {
Matrix mm(1,ncols);
mm=0;
m = mm;
} else {
Matrix mm(m.Nrows()+1,ncols);
mm = 0;
mm.SubMatrix(1,m.Nrows(),1,ncols) = m;
m = mm;
}
return 0;
}
//------------------------------------------------------------------------//
// Spatial transformation functions (rotations and affine transforms)
int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff,
const ColumnVector& centre)
{
Tracer tr("construct_rotmat_euler");
ColumnVector angl(3);
Matrix newaff(4,4);
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
if (n<=0) return 0;
// order of parameters is 3 rotation + 3 translation
// angles are in radians
// order of parameters is (Rx,Ry,Rz) and R = Rx.Ry.Rz
angl=0.0;
angl(1)=params(1);
make_rot(angl,centre,newaff);
aff = aff * newaff;
if (n==1) return 0;
angl=0.0;
angl(2)=params(2);
make_rot(angl,centre,newaff);
aff = aff * newaff;
if (n==2) return 0;
angl=0.0;
angl(3)=params(3);
make_rot(angl,centre,newaff);
aff = aff * newaff;
if (n==3) return 0;
aff(1,4)+=params(4);
if (n==4) return 0;
aff(2,4)+=params(5);
if (n==5) return 0;
aff(3,4)+=params(6);
if (n==6) return 0;
return 1;
}
int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff)
{
Tracer tr("construct_rotmat_euler");
ColumnVector centre(3);
centre = 0.0;
return construct_rotmat_euler(params,n,aff,centre);
}
int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff,
const ColumnVector& centre)
{
Tracer tr("construct_rotmat_quat");
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
if (n<=0) return 0;
// order of parameters is 3 rotation (last 3 quaternion components)
// + 3 translation
if ((n>=1) && (n<3)) { cerr<<"Can only do 3 or more, not "<< n <<endl; }
float w, w2 = 1.0 - Sqr(params(1)) - Sqr(params(2)) - Sqr(params(3));
if (w2 < 0.0) {
cerr << "Parameters do not form a valid axis - greater than unity\n";
return -1;
}
w = std::sqrt(w2);
float x=params(1), y=params(2), z=params(3);
aff(1,1) = 1 - 2*y*y - 2*z*z;
aff(2,2) = 1 - 2*x*x - 2*z*z;
aff(3,3) = 1 - 2*x*x - 2*y*y;
aff(1,2) = 2*x*y - 2*w*z;
aff(2,1) = 2*x*y + 2*w*z;
aff(1,3) = 2*x*z + 2*w*y;
aff(3,1) = 2*x*z - 2*w*y;
aff(2,3) = 2*y*z - 2*w*x;
aff(3,2) = 2*y*z + 2*w*x;
// Given Rotation matrix R: x' = Rx + (I-R)*centre
ColumnVector trans(3);
trans = aff.SubMatrix(1,3,1,3)*centre;
aff.SubMatrix(1,3,4,4) = centre - trans;
aff(1,4) += params(4);
if (n==4) return 0;
aff(2,4) += params(5);
if (n==5) return 0;
aff(3,4) += params(6);
if (n==6) return 0;
return 1;
}
int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff)
{
Tracer tr("construct_rotmat_quat");
ColumnVector centre(3);
centre = 0.0;
return construct_rotmat_quat(params,n,aff,centre);
}
int make_rot(const ColumnVector& angl, const ColumnVector& centre,
Matrix& rot)
{
// Matrix rot must be 4x4; angl and orig must be length 3
Tracer tr("make_rot");
rot=IdentityMatrix(4); // default return value
float theta;
theta = norm2(angl);
if (theta<1e-8) { // avoid round-off errors and return Identity
return 0;
}
ColumnVector axis = angl/theta;
ColumnVector x1(3), x2(3), x3(3);
x1 = axis;
x2(1) = -axis(2); x2(2) = axis(1); x2(3) = 0.0;
if (norm2(x2)<=0.0) {
x2(1) = 1.0; x2(2) = 0.0; x2(3) = 0.0;
}
x2 = x2/norm2(x2);
x3 = cross(x1,x2);
x3 = x3/norm2(x3);
Matrix basischange(3,3);
basischange.SubMatrix(1,3,1,1) = x2;
basischange.SubMatrix(1,3,2,2) = x3;
basischange.SubMatrix(1,3,3,3) = x1;
rotcore(1,1)=cos(theta);
rotcore(2,2)=cos(theta);
rotcore(1,2)=sin(theta);
rotcore(2,1)=-sin(theta);
rot.SubMatrix(1,3,1,3) = basischange * rotcore * basischange.t();
ColumnVector trans(3);
trans = (ident3 - rot.SubMatrix(1,3,1,3))*centre;
rot.SubMatrix(1,3,4,4)=trans;
return 0;
}
int getrotaxis(ColumnVector& axis, const Matrix& rotmat)
{
Tracer tr("getrotaxis");
Matrix residuals(3,3);
residuals = rotmat*rotmat.t() - IdentityMatrix(3);
if (residuals.SumSquare() > 1e-4)
{ cerr << "Failed orthogonality check!" << endl; return -1; }
Matrix u(3,3), v(3,3);
DiagonalMatrix d(3);
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
// return column of V corresponding to minimum value of |S|
for (int i=1; i<=3; i++) {
if (fabs(d(i))<1e-4) axis = v.SubMatrix(1,3,i,i);
}
return 0;
}
int rotmat2euler(ColumnVector& angles, const Matrix& rotmat)
{
// uses the convention that R = Rx.Ry.Rz
Tracer tr("rotmat2euler");
float cz, sz, cy, sy, cx, sx;
cy = std::sqrt(Sqr(rotmat(1,1)) + Sqr(rotmat(1,2)));
if (cy < 1e-4) {
//cerr << "Cos y is too small - Gimbal lock condition..." << endl;
cx = rotmat(2,2);
sx = -rotmat(3,2);
sy = -rotmat(1,3);
angles(1) = atan2(sx,cx);
angles(2) = atan2(sy,(float)0.0);
angles(3) = 0.0;
} else {
// choose by convention that cy > 0
// get the same rotation if: sy stays same & all other values swap sign
cz = rotmat(1,1)/cy;
sz = rotmat(1,2)/cy;
cx = rotmat(3,3)/cy;
sx = rotmat(2,3)/cy;
sy = -rotmat(1,3);
//atan2(sin,cos) (defined as atan2(y,x))
angles(1) = atan2(sx,cx);
angles(2) = atan2(sy,cy);
angles(3) = atan2(sz,cz);
}
return 0;
}
int rotmat2quat(ColumnVector& quaternion, const Matrix& rotmat)
{
Tracer tr("rotmat2quat");
float trace = rotmat.SubMatrix(1,3,1,3).Trace();
if (trace > 0) {
float w = std::sqrt((trace + 1.0)/4.0);
quaternion(1) = (rotmat(3,2) - rotmat(2,3))/(4.0*w);
quaternion(2) = (rotmat(1,3) - rotmat(3,1))/(4.0*w);
quaternion(3) = (rotmat(2,1) - rotmat(1,2))/(4.0*w);
} else if ((rotmat(1,1) > rotmat(2,2)) && (rotmat(1,1) > rotmat(3,3))) {
// first col case
float s = std::sqrt(1.0 + rotmat(1,1) - rotmat(2,2) - rotmat(3,3)) * 2.0;
quaternion(1) = 0.5 / s;
quaternion(2) = (-rotmat(1,2) - rotmat(1,2)) / s;
quaternion(3) = (-rotmat(1,3) - rotmat(3,1)) / s;
} else if ((rotmat(2,2) > rotmat(1,1)) && (rotmat(2,2) > rotmat(3,3))) {
// 2nd col case
float s = std::sqrt(1.0 + rotmat(2,2) - rotmat(1,1) - rotmat(3,3)) * 2.0;
quaternion(1) = (-rotmat(1,2) - rotmat(2,1)) / s;
quaternion(2) = 0.5 / s;
quaternion(3) = (-rotmat(2,3) - rotmat(3,2)) / s;
} else if ((rotmat(3,3) > rotmat(1,1)) && (rotmat(3,3) > rotmat(2,2))) {
// 3rd col case
float s = std::sqrt(1.0 + rotmat(3,3) - rotmat(1,1) - rotmat(2,2)) * 2.0;
quaternion(1) = (-rotmat(1,3) - rotmat(3,1)) / s;
quaternion(2) = (-rotmat(2,3) - rotmat(3,2)) / s;
quaternion(3) = 0.5 / s;
}
return 0;
}
int decompose_aff(ColumnVector& params, const Matrix& affmat,
const ColumnVector& centre,
int (*rotmat2params)(ColumnVector& , const Matrix& ))
{
// decomposes using the convention: mat = rotmat * skew * scale
// order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
// angles are in radians
Tracer tr("decompose_aff");
if (params. Nrows() < 12)
params.ReSize(12);
if (rotmat2params==0)
{
cerr << "No rotmat2params function specified" << endl;
return -1;
}
ColumnVector x(3), y(3), z(3);
Matrix aff3(3,3);
aff3 = affmat.SubMatrix(1,3,1,3);
x = affmat.SubMatrix(1,3,1,1);
y = affmat.SubMatrix(1,3,2,2);
z = affmat.SubMatrix(1,3,3,3);
float sx, sy, sz, a, b, c;
sx = norm2(x);
sy = std::sqrt( dot(y,y) - (Sqr(dot(x,y)) / Sqr(sx)) );
a = dot(x,y)/(sx*sy);
ColumnVector x0(3), y0(3);
x0 = x/sx;
y0 = y/sy - a*x0;
sz = std::sqrt(dot(z,z) - Sqr(dot(x0,z)) - Sqr(dot(y0,z)));
b = dot(x0,z)/sz;
c = dot(y0,z)/sz;
params(7) = sx; params(8) = sy; params(9) = sz;
Matrix scales(3,3);
float diagvals[] = {sx,sy,sz};
diag(scales,diagvals);
Real skewvals[] = {1,a,b,0 , 0,1,c,0 , 0,0,1,0 , 0,0,0,1};
Matrix skew(4,4);
skew << skewvals;
params(10) = a; params(11) = b; params(12) = c;
Matrix rotmat(3,3);
rotmat = aff3 * scales.i() * (skew.SubMatrix(1,3,1,3)).i();
ColumnVector transl(3);
transl = affmat.SubMatrix(1,3,1,3)*centre + affmat.SubMatrix(1,3,4,4)
- centre;
for (int i=1; i<=3; i++) { params(i+3) = transl(i); }
ColumnVector rotparams(3);
(*rotmat2params)(rotparams,rotmat);
Mark Jenkinson
committed
for (int i=1; i<=3; i++) { params(i) = rotparams(i); }
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
return 0;
}
int decompose_aff(ColumnVector& params, const Matrix& affmat,
int (*rotmat2params)(ColumnVector& , const Matrix& ))
{
Tracer tr("decompose_aff");
ColumnVector centre(3);
centre = 0.0;
return decompose_aff(params,affmat,centre,rotmat2params);
}
int compose_aff(const ColumnVector& params, int n, const ColumnVector& centre,
Matrix& aff,
int (*params2rotmat)(const ColumnVector& , int , Matrix& ,
const ColumnVector& ) )
{
Tracer tr("compose_aff");
if (n<=0) return 0;
// order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
// angles are in radians
(*params2rotmat)(params,n,aff,centre);
if (n<=6) return 0;
if (n>=7) {
scale(1,1)=params(7);
if (n>=8) scale(2,2)=params(8);
else scale(2,2)=params(7);
if (n>=9) scale(3,3)=params(9);
else scale(3,3)=params(7);
}
// fix the translation so that the centre is not moved
ColumnVector strans(3);
strans = centre - scale.SubMatrix(1,3,1,3)*centre;
scale.SubMatrix(1,3,4,4) = strans;
if (n>=10) {
if (n>=10) skew(1,2)=params(10);
if (n>=11) skew(1,3)=params(11);
if (n>=12) skew(2,3)=params(12);
}
// fix the translation so that the centre is not moved
ColumnVector ktrans(3);
ktrans = centre - skew.SubMatrix(1,3,1,3)*centre;
skew.SubMatrix(1,3,4,4) = ktrans;
aff = aff * skew * scale;
return 0;
}
float rms_deviation(const Matrix& affmat1, const Matrix& affmat2,
const ColumnVector& centre, const float rmax)
{
Tracer trcr("rms_deviation");
Mark Jenkinson
committed
Matrix isodiff(4,4), a1(4,4), a2(4,4);
if ((affmat1.Nrows()==4) && (affmat1.Ncols()==4)) { a1=affmat1; }
else if ((affmat1.Nrows()==3) && (affmat1.Ncols()==3)) { a1=IdentityMatrix(4); a1.SubMatrix(1,3,1,3)=affmat1; }
Mark Jenkinson
committed
else { cerr << "ERROR:: Can only calculate RMS deviation for 4x4 or 3x3 matrices" << endl; exit(-5); }
if ((affmat2.Nrows()==4) && (affmat2.Ncols()==4)) { a2=affmat2; }
else if ((affmat2.Nrows()==3) && (affmat2.Ncols()==3)) { a2=IdentityMatrix(4); a2.SubMatrix(1,3,1,3)=affmat2; }
Mark Jenkinson
committed
else { cerr << "ERROR:: Can only calculate RMS deviation for 4x4 or 3x3 matrices" << endl; exit(-5); }
Mark Jenkinson
committed
isodiff = a1*a2.i() - IdentityMatrix(4);
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
} catch(...) {
cerr << "RMS_DEVIATION ERROR:: Could not invert matrix" << endl;
exit(-5);
}
Matrix adiff(3,3);
adiff = isodiff.SubMatrix(1,3,1,3);
ColumnVector tr(3);
tr = isodiff.SubMatrix(1,3,4,4) + adiff*centre;
float rms = std::sqrt( (tr.t() * tr).AsScalar() +
(rmax*rmax/5.0)*Trace(adiff.t()*adiff) );
return rms;
}
float rms_deviation(const Matrix& affmat1, const Matrix& affmat2,
const float rmax)
{
ColumnVector centre(3);
centre = 0;
return rms_deviation(affmat1,affmat2,centre,rmax);
}
// helper function - calls nifti, but with FSL default case
Mark Jenkinson
committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
Matrix Mat44ToNewmat(mat44 m)
{
Matrix r(4,4);
for(unsigned short i = 0; i < 4; ++i)
for(unsigned short j = 0; j < 4; ++j)
r(i+1, j+1) = m.m[i][j];
return r;
}
mat44 NewmatToMat44(const Matrix& m)
{
mat44 r;
for(unsigned short i = 0; i < 4; ++i)
for(unsigned short j = 0; j < 4; ++j)
r.m[i][j] = m(i+1, j+1);
return r;
}
void get_axis_orientations(const Matrix& sform_mat, int sform_code,
const Matrix& qform_mat, int qform_code,
int& icode, int& jcode, int& kcode)
Matrix vox2mm(4,4);
if (sform_code!=NIFTI_XFORM_UNKNOWN) {
vox2mm = sform_mat;
} else if (qform_code!=NIFTI_XFORM_UNKNOWN) {
vox2mm = qform_mat;
} else {
// ideally should be sampling_mat(), but for orientation it doesn't matter
mat44 v2mm;
for (int ii=0; ii<4; ii++) { for (int jj=0; jj<4; jj++) {
v2mm.m[ii][jj] = vox2mm(ii+1,jj+1);
} }
nifti_mat44_to_orientation(v2mm,&icode,&jcode,&kcode);
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
Matrix mat44_to_newmat(mat44 inmat)
{
Matrix retmat(4,4);
for (int ii=0; ii<4; ii++) {
for (int jj=0; jj<4; jj++) {
retmat(ii+1,jj+1) = inmat.m[ii][jj];
}
}
return retmat;
}
mat44 newmat_to_mat44(const Matrix& inmat)
{
mat44 retmat;
for (int ii=0; ii<4; ii++) {
for (int jj=0; jj<4; jj++) {
retmat.m[ii][jj] = inmat(ii+1,jj+1);
}
}
return retmat;
}
// Matlab style functions for percentiles, quantiles and median
// AUG 06 CB
{
}
float interp1(const ColumnVector& x, const ColumnVector& y, float xi)
// Look-up function for data table defined by x, y
// Returns the values yi at xi using linear interpolation
// Assumes that x is sorted in ascending order
{
float ans;
if(xi >= x.Maximum())
ans = y(x.Nrows());
else
if(xi <= x.Minimum())
ans = y(1);
else{
int ind=2;
while(xi >= x(ind)) { ind++; }
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
float xa = x(ind-1), xb = x(ind), ya = y(ind-1), yb = y(ind);
ans = ya + (xi - xa)/(xb - xa) * (yb - ya);
}
return ans;
}
float quantile(const ColumnVector& in, int which)
{
float p;
switch (which)
{
case 0 : p = 0.0; break;
case 1 : p = 25.0; break;
case 2 : p = 50.0; break;
case 3 : p = 75.0; break;
case 4 : p =100.0; break;
default: p = 0.0;
}
return percentile(in,p);
}
float percentile(const ColumnVector& in, float p)
{
ColumnVector y = in;
int num = y.Nrows();
ColumnVector xx,yy,sequence,a(1),b(1),c(1),d(1);
sequence = 100*(seq(num)-0.5)/num; a << y(1); b << y(num); c = 0; d = 100;
xx = (c & sequence & d);
yy = (a & y & b);
return interp1(xx,yy,p);
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
ReturnMatrix quantile(const Matrix& in, int which)
{
int num = in.Ncols();
Matrix res(1,num);
for (int ctr=1; ctr<=num; ctr++){
ColumnVector tmp = in.Column(ctr);
res(1,ctr) = quantile(tmp,which);
}
res.Release();
return res;
}
ReturnMatrix percentile(const Matrix& in, float p)
{
int num = in.Ncols();
Matrix res(1,num);
for (int ctr=1; ctr<=num; ctr++){
ColumnVector tmp = in.Column(ctr);
res(1,ctr) = percentile(tmp,p);
}
res.Release();
return res;
}
void cart2sph(const ColumnVector& dir, float& th, float& ph)
Mark Jenkinson
committed
float mag=sqrt(dir(1)*dir(1)+dir(2)*dir(2)+dir(3)*dir(3));
if(mag==0){
ph=M_PI/2;
th=M_PI/2;
}
else{
if(dir(1)==0 && dir(2)>=0) ph=M_PI/2;
else if(dir(1)==0 && dir(2)<0) ph=-M_PI/2;
Mark Jenkinson
committed
else if(dir(1)>0) ph=atan(dir(2)/dir(1));
else if(dir(2)>0) ph=atan(dir(2)/dir(1))+M_PI;
else ph=atan(dir(2)/dir(1))-M_PI;
Mark Jenkinson
committed
else if(dir(3)>0) th=atan(sqrt(dir(1)*dir(1)+dir(2)*dir(2))/dir(3));
else th=atan(sqrt(dir(1)*dir(1)+dir(2)*dir(2))/dir(3))+M_PI;
}
}
void cart2sph(const Matrix& dir,ColumnVector& th,ColumnVector& ph)
{
if(th.Nrows()!=dir.Ncols()){
th.ReSize(dir.Ncols());
}
if(ph.Nrows()!=dir.Ncols()){
ph.ReSize(dir.Ncols());
}
Mark Jenkinson
committed
float mag=sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i)+dir(3,i)*dir(3,i));
if(mag==0){
ph(i)=M_PI/2;
th(i)=M_PI/2;
}
else{
if(dir(1,i)==0 && dir(2,i)>=0) ph(i)=M_PI/2;
else if(dir(1,i)==0 && dir(2,i)<0) ph(i)=-M_PI/2;
Mark Jenkinson
committed
else if(dir(1,i)>0) ph(i)=atan(dir(2,i)/dir(1,i));
else if(dir(2,i)>0) ph(i)=atan(dir(2,i)/dir(1,i))+M_PI;
else ph(i)=atan(dir(2,i)/dir(1,i))-M_PI;
Mark Jenkinson
committed
else if(dir(3,i)>0) th(i)=atan(sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i))/dir(3,i));
else th(i)=atan(sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i))/dir(3,i))+M_PI;
// added by SJ
void cart2sph(const vector<ColumnVector>& dir,ColumnVector& th,ColumnVector& ph)
{
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
ph.ReSize(dir.size());
}
//double _2pi=2*M_PI;
double _pi2=M_PI/2;
int j=1;
for (unsigned int i=0;i<dir.size();i++) {
float mag=std::sqrt(dir[i](1)*dir[i](1)+dir[i](2)*dir[i](2)+dir[i](3)*dir[i](3));
if(mag==0){
ph(j)=_pi2;
th(j)=_pi2;
}
else{
if(dir[i](1)==0 && dir[i](2)>=0) ph(j)=_pi2;
else if(dir[i](1)==0 && dir[i](2)<0) ph(j)=-_pi2;
else if(dir[i](1)>0) ph(j)=std::atan(dir[i](2)/dir[i](1));
else if(dir[i](2)>0) ph(j)=std::atan(dir[i](2)/dir[i](1))+M_PI;
else ph(j)=std::atan(dir[i](2)/dir[i](1))-M_PI;
//ph(j)=fmod(ph(j),_2pi);
if(dir[i](3)==0) th(j)=_pi2;
else if(dir[i](3)>0) th(j)=std::atan(std::sqrt(dir[i](1)*dir[i](1)+dir[i](2)*dir[i](2))/dir[i](3));
else th(j)=std::atan(std::sqrt(dir[i](1)*dir[i](1)+dir[i](2)*dir[i](2))/dir[i](3))+M_PI;
//th(j)=fmod(th(j),M_PI);
}
j++;
}
}
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
// Added by CFB --- Matlab style Matrix functions
ReturnMatrix ones(const int dim1, const int dim2)
{
int tdim = dim2;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim); res = 1.0;
res.Release();
return res;
}
ReturnMatrix zeros(const int dim1, const int dim2)
{
int tdim = dim2;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim); res = 0.0;
res.Release();
return res;
}
ReturnMatrix repmat(const Matrix &mat, const int rows, const int cols)
{
Matrix res = mat;
for(int ctr = 1; ctr < cols; ctr++){res |= mat;}
Matrix tmpres = res;
Mark Jenkinson
committed
for(int ctr = 1; ctr < rows; ctr++){res &= tmpres;}
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
res.Release();
return res;
}
ReturnMatrix dist2(const Matrix &mat1, const Matrix &mat2)
{
Matrix res(mat1.Ncols(),mat2.Ncols());
for(int ctr1 = 1; ctr1 <= mat1.Ncols(); ctr1++)
for(int ctr2 =1; ctr2 <= mat2.Ncols(); ctr2++)
{
ColumnVector tmp;
tmp=mat1.Column(ctr1)-mat2.Column(ctr2);
res(ctr1,ctr2) = std::sqrt(tmp.SumSquare());
}
res.Release();
return res;
}
ReturnMatrix abs(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::abs(res(mr,mc));
}
}
res.Release();
return res;
}
void abs_econ(Matrix& mat)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::abs(mat(mr,mc));
}
}
}
ReturnMatrix sqrt(const Matrix& mat)
{
Matrix res = mat;
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(res(mr,mc)<0){ neg_flag = true; }
res(mr,mc)=std::sqrt(std::abs(res(mr,mc)));
}
}
if(neg_flag){
//cerr << " Matrix contained negative elements" << endl;
//cerr << " return sqrt(abs(X)) instead" << endl;
}
res.Release();
return res;
}
void sqrt_econ(Matrix& mat)
{
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(mat(mr,mc)<0){ neg_flag = true; }
mat(mr,mc)=std::sqrt(std::abs(mat(mr,mc)));
}
}
if(neg_flag){
//cerr << " Matrix contained negative elements" << endl;
//cerr << " return sqrt(abs(X)) instead" << endl;
}
}
ReturnMatrix sqrtm(const Matrix& mat)
{
Matrix res, tmpU, tmpV;
DiagonalMatrix tmpD;
SVD(mat, tmpD, tmpU, tmpV);
res = tmpU*sqrt(tmpD)*tmpV.t();
res.Release();
return res;
}
ReturnMatrix log(const Matrix& mat)
{
Matrix res = mat;
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(res(mr,mc)<0){ neg_flag = true; }
res(mr,mc)=std::log(std::abs(res(mr,mc)));
}
}
if(neg_flag){
// cerr << " Matrix contained negative elements" << endl;
// cerr << " return log(abs(X)) instead" << endl;
}
res.Release();
return res;
}
void log_econ(Matrix& mat)
{
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(mat(mr,mc)<0){ neg_flag = true; }
mat(mr,mc)=std::log(std::abs(mat(mr,mc)));
}
}
if(neg_flag){
// cerr << " Matrix contained negative elements" << endl;
// cerr << " return log(abs(X)) instead" << endl;
}
}
ReturnMatrix exp(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::exp(res(mr,mc));
}
}
res.Release();
return res;
}
void exp_econ(Matrix& mat)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::exp(mat(mr,mc));
}
}
}
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
// optimised code for calculating matrix exponential
ReturnMatrix expm(const Matrix& mat){
float nmat = sum(mat).Maximum();
int nc=mat.Ncols(),nr=mat.Nrows();
Matrix res(nr,nc);
IdentityMatrix id(nr);
Matrix U(nr,nc),V(nr,nc);
if(nmat <= 1.495585217958292e-002){ // m=3
Matrix mat2(nr,nc);
mat2=mat*mat;
U = mat*(mat2+60.0*id);
V = 12.0*mat2+120.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 2.539398330063230e-001){ // m=5
Matrix mat2(nr,nc),mat4(nr,nc);
mat2=mat*mat;mat4=mat2*mat2;
U = mat*(mat4+420.0*mat2+15120.0*id);
V = 30.0*mat4+3360.0*mat2+30240.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 9.504178996162932e-001){ // m=7
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc);
mat2=mat*mat;mat4=mat2*mat2,mat6=mat4*mat2;
U = mat*(mat6+1512.0*mat4+277200.0*mat2+8648640.0*id);
V = 56.0*mat6+25200.0*mat4+1995840.0*mat2+17297280.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 2.097847961257068e+000){
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc),mat8(nr,nc);
mat2=mat*mat;mat4=mat2*mat2,mat6=mat4*mat2,mat8=mat6*mat2;
U = mat*(mat8+3960.0*mat6+2162160.0*mat4+302702400.0*mat2+8821612800.0*id);
V = 90.0*mat8+110880.0*mat6+30270240.0*mat4+2075673600.0*mat2+17643225600.0*id;
res = (-U+V).i()*(U+V);
}
else if(nmat <= 5.371920351148152e+000){
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc);
mat2=mat*mat;mat4=mat2*mat2,mat6=mat4*mat2;
U = mat*(mat6*(mat6+16380.0*mat4+40840800.0*mat2)+
+33522128640.0*mat6+10559470521600.0*mat4+1187353796428800.0*mat2+32382376266240000.0*id);
V = mat6*(182.0*mat6+960960.0*mat4+1323241920.0*mat2)
+ 670442572800.0*mat6+129060195264000.0*mat4+7771770303897600.0*mat2+64764752532480000.0*id;
res = (-U+V).i()*(U+V);
}
else{
double t;int s;
t = frexp(nmat/5.371920351148152,&s);
if(t==0.5) s--;
t = std::pow(2.0,s);
res = (mat/t);
Matrix mat2(nr,nc),mat4(nr,nc),mat6(nr,nc);
mat2=res*res;mat4=mat2*mat2,mat6=mat4*mat2;
U = res*(mat6*(mat6+16380*mat4+40840800*mat2)+
+33522128640.0*mat6+10559470521600.0*mat4+1187353796428800.0*mat2+32382376266240000.0*id);
V = mat6*(182.0*mat6+960960.0*mat4+1323241920.0*mat2)
+ 670442572800.0*mat6+129060195264000.0*mat4+7771770303897600.0*mat2+64764752532480000.0*id;
res = (-U+V).i()*(U+V);
for(int i=1;i<=s;i++)
res = res*res;
}
res.Release();
return res;
}
ReturnMatrix tanh(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::tanh(res(mr,mc));
}
}
res.Release();
return res;
}
void tanh_econ(Matrix& mat)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::tanh(mat(mr,mc));
}
}
}
ReturnMatrix pow(const Matrix& mat, const double exp)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::pow(res(mr,mc),exp);
}
}
res.Release();
return res;
}
void pow_econ(Matrix& mat, const double exp)
{
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
mat(mr,mc)=std::pow(mat(mr,mc),exp);
}
}
}
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
ReturnMatrix max(const Matrix& mat)
{
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)>res(1,mc)){res(1,mc)=mat(mr,mc);}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)>res(1,1)){res(1,1)=mat(1,mc);}
}
}
res.Release();
return res;
}
ReturnMatrix max(const Matrix& mat,ColumnVector& index)
{
index.ReSize(mat.Nrows());
index=1;
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)>res(1,mc))
{
res(1,mc)=mat(mr,mc);
index(mr)=mc;
}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)>res(1,1))
{
res(1,1)=mat(1,mc);
index(1)=mc;
}
}
}
res.Release();
return res;
}
ReturnMatrix min(const Matrix& mat)
{
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)<res(1,mc)){res(1,mc)=mat(mr,mc);}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)<res(1,1)){res(1,1)=mat(1,mc);}
}
}
res.Release();
return res;
}
ReturnMatrix sum(const Matrix& mat, const int dim)
{
Matrix res;
if (dim == 1){
res = zeros(1,mat.Ncols());
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += mat(mr,mc);
}
}
}
else{
res = zeros(mat.Nrows(),1);
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += mat(mr,mc);
}
}
}
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
ReturnMatrix mean(const Matrix& mat, const RowVector& weights, const int dim) //weights are considered to be in the "direction" of dim and normalised to sum 1
{
Matrix res;
if (dim == 1){
res = zeros(1,mat.Ncols());
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += weights(mr)*mat(mr,mc);
}
}
}
else{
res = zeros(mat.Nrows(),1);
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += weights(mc)*mat(mr,mc);
}
}
}
res.Release();
return res;
}
ReturnMatrix mean(const Matrix& mat, const int dim)
{
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
Matrix res;
int N;
if (dim == 1){
res = zeros(1,mat.Ncols());
N = mat.Nrows();
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += mat(mr,mc)/N;
}
}
}
else{
res = zeros(mat.Nrows(),1);
N = mat.Ncols();
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += mat(mr,mc)/N;
}
}
}
res.Release();
return res;
ReturnMatrix var(const Matrix& mat, const int dim)
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
{
Matrix res, matmean;
matmean = mean(mat,dim);
int N;
if (dim == 1){
res = zeros(1,mat.Ncols());
N = mat.Nrows();
if(N>1){
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(1,mc) += (mat(mr,mc) - matmean(1,mc)) * (mat(mr,mc) - matmean(1,mc))/(N-1);
}
}
}
}
else{
res = zeros(mat.Nrows(),1);
N = mat.Ncols();
if(N>1){
for (int mr=1; mr<=mat.Nrows(); mr++) {
for (int mc=1; mc<=mat.Ncols(); mc++) {
res(mr,1) += (mat(mr,mc) -matmean(mr,1))* (mat(mr,mc)-matmean(mr,1))/(N-1);
}
}
}
}
res.Release();
return res;
}
ReturnMatrix stdev(const Matrix& mat, const int dim)
{
return sqrt(var(mat,dim));
}
ReturnMatrix gt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) > mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix lt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) < mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix geqt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) >= mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix geqt(const Matrix& mat,const float a)
{
int ncols = mat.Ncols();
int nrows = mat.Nrows();
Matrix res(nrows,ncols);
res=0.0;
for (int ctr1 = 1; ctr1 <= nrows; ctr1++) {
for (int ctr2 =1; ctr2 <= ncols; ctr2++) {
if( mat(ctr1,ctr2) >= a){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix leqt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) <= mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix eq(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) == mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix neq(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) != mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
ReturnMatrix SD(const Matrix& mat1,const Matrix& mat2)
{
if((mat1.Nrows() != mat2.Nrows()) ||
(mat1.Ncols() != mat2.Ncols()) ){
cerr <<"MISCMATHS::SD - matrices are of different dimensions"<<endl;
exit(-1);
}
Matrix ret(mat1.Nrows(),mat1.Ncols());
for (int r = 1; r <= mat1.Nrows(); r++) {
for (int c =1; c <= mat1.Ncols(); c++) {
if( mat2(r,c)==0)
ret(r,c)=0;
else
ret(r,c) = mat1(r,c)/mat2(r,c);
}
}
ret.Release();
return ret;
}
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
void SD_econ(Matrix& mat1,const Matrix& mat2)
{
if((mat1.Nrows() != mat2.Nrows()) ||
(mat1.Ncols() != mat2.Ncols()) ){
cerr <<"MISCMATHS::SD - matrices are of different dimensions"<<endl;
exit(-1);
}
for (int r = 1; r <= mat1.Nrows(); r++) {
for (int c =1; c <= mat1.Ncols(); c++) {
if( mat2(r,c)==0)
mat1(r,c)=0;
else
mat1(r,c) = mat1(r,c)/mat2(r,c);
}
}
}
void SP_econ(Matrix& mat1,const Matrix& mat2)
{
if((mat1.Nrows() != mat2.Nrows()) ||
(mat1.Ncols() != mat2.Ncols()) ){
cerr <<"MISCMATHS::SD - matrices are of different dimensions"<<endl;
exit(-1);
}
for (int r = 1; r <= mat1.Nrows(); r++) {
for (int c =1; c <= mat1.Ncols(); c++) {
mat1(r,c) = mat1(r,c) * mat2(r,c);
}
}
}
ReturnMatrix vox_to_vox(const ColumnVector& xyz1,const ColumnVector& dims1,const ColumnVector& dims2,const Matrix& xfm){
ColumnVector xyz1_mm(4),xyz2_mm,xyz2(3);
xyz1_mm<<xyz1(1)*dims1(1)<<xyz1(2)*dims1(2)<<xyz1(3)*dims1(3)<<1;
xyz2_mm=xfm*xyz1_mm;
xyz2_mm=xyz2_mm/xyz2_mm(4);
xyz2<<xyz2_mm(1)/dims2(1)<<xyz2_mm(2)/dims2(2)<<xyz2_mm(3)/dims2(3);
xyz2.Release();
return xyz2;
}
ReturnMatrix mni_to_imgvox(const ColumnVector& mni,const ColumnVector& mni_origin,const Matrix& mni2img, const ColumnVector& img_dims){
ColumnVector mni_new_origin(4),img_mm;//homogeneous
ColumnVector img_vox(3);
mni_new_origin<<mni(1)+mni_origin(1)<<mni(2)+mni_origin(2)<<mni(3)+mni_origin(3)<<1;
img_mm=mni2img*mni_new_origin;
img_vox<<img_mm(1)/img_dims(1)<<img_mm(2)/img_dims(2)<<img_mm(3)/img_dims(3);
img_vox.Release();
return img_vox;
}
void remmean_econ(Matrix& mat, const int dim)
{
Matrix matmean;
remmean(mat, matmean, dim);
void remmean(Matrix& mat, Matrix& matmean, const int dim)
{
matmean = mean(mat,dim);
if (dim == 1){
for (int mr=1; mr<=mat.Nrows(); mr++)
mat.Row(mr) -= matmean.AsRow();
}
else{
for (int mc=1; mc<=mat.Ncols(); mc++)
mat.Column(mc) -= matmean.AsColumn();
}
}
void remmean(const Matrix& mat, Matrix& demeanedmat, Matrix& Mean, const int dim)
{
demeanedmat = mat;
remmean(demeanedmat,Mean, dim);
}
ReturnMatrix remmean(const Matrix& mat, const int dim)
{
Matrix res = mat;
remmean_econ(res,dim);
res.Release();
return res;
ReturnMatrix oldcov(const Matrix& mat, const int norm)
{
SymmetricMatrix res;
Matrix tmp;
int N;
tmp=remmean(mat);
if (norm == 1) {N = mat.Nrows();}
else {N = mat.Nrows()-1;}
res << tmp.t()*tmp;
res = res/N;
res.Release();
return res;
}
ReturnMatrix cov(const Matrix& data, const bool sampleCovariance, int econ)
{
//This assumes vectors are stored using column order in data
res << zeros(data.Ncols(),data.Ncols());
Matrix meanM(mean(data));
int N=data.Nrows();
if (sampleCovariance && N>1)
N--;
if ( econ < 1 )
econ=data.Nrows();
for(int startRow=1; startRow <= data.Nrows(); startRow+=econ) {
Matrix suba=data.SubMatrix(startRow,Min(startRow+econ-1,data.Nrows()),1,data.Ncols());
for (int row=1; row <= suba.Nrows(); row++)
suba.Row(row)-=meanM;
res << res + suba.t()*suba/N;
}
res.Release();
return res;
}
ReturnMatrix cov_r(const Matrix& data, const bool sampleCovariance, int econ)
{
//This assumes vectors are stored using row order in data
SymmetricMatrix res;
res << zeros(data.Nrows(),data.Nrows());
Matrix meanM(mean(data,2));
int N=data.Ncols();
if (sampleCovariance && N>1)
N--;
if ( econ < 1 )
econ=data.Ncols();
for(int startCol=1; startCol <= data.Ncols(); startCol+=econ) {
Matrix suba=data.SubMatrix(1,data.Nrows(),startCol,Min(startCol+econ-1,data.Ncols()));
for (int col=1; col <= suba.Ncols(); col++)
suba.Column(col)-=meanM;
res << res + suba*suba.t()/N;
}
ReturnMatrix cov_r(const Matrix& data, const Matrix& weights2, int econ)
{
//This assumes vectors are stored using row order in data, weights are a single "row". No bool flag as biased vs unbiased isn't relevant here
RowVector weights=((weights2/weights2.Sum()).AsRow());
SymmetricMatrix res;
res << zeros(data.Nrows(),data.Nrows());
Matrix meanM(mean(data,weights,2));
double N=(1-weights.SumSquare());//As weights.Sum() is equal to 1
if ( econ < 1 )
econ=data.Ncols();
for(int startCol=1; startCol <= data.Ncols(); startCol+=econ) {
Matrix suba=data.SubMatrix(1,data.Nrows(),startCol,Min(startCol+econ-1,data.Ncols()));
for (int col=1; col <= suba.Ncols(); col++) {
suba.Column(col)-=meanM;
suba.Column(col)*=sqrt(weights(startCol+col-1));
}
res << res + suba*suba.t()/N;
}
return res;
}
ReturnMatrix corrcoef(const Matrix& mat, const bool norm)
{
SymmetricMatrix res;
res = cov(mat,norm);
Matrix D;
D=diag(res);
D=sqrt(D*D.t());
res << SD(res,D);
res.Release();
return res;
}
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
ReturnMatrix flipud(const Matrix& mat)
{
Matrix rmat(mat.Nrows(),mat.Ncols());
for(int j=1;j<=mat.Ncols();j++)
for(int i=1;i<=mat.Nrows();i++)
rmat(i,j)=mat(mat.Nrows()-i+1,j);
rmat.Release();
return rmat;
}
ReturnMatrix fliplr(const Matrix& mat)
{
Matrix rmat(mat.Nrows(),mat.Ncols());
for(int j=1;j<=mat.Ncols();j++)
for(int i=1;i<=mat.Nrows();i++)
rmat(i,j)=mat(i,mat.Ncols()-j+1);
rmat.Release();
return rmat;
}
void symm_orth(Matrix &Mat)
{
SymmetricMatrix Metric;
Metric << Mat.t()*Mat;
Metric = Metric.i();
Matrix tmpE;
DiagonalMatrix tmpD;
EigenValues(Metric,tmpD,tmpE);
Mat = Mat * tmpE * sqrt(abs(tmpD)) * tmpE.t();
}
void powerspectrum(const Matrix &Mat1, Matrix &Result, bool useLog)
//calculates the powerspectrum for every column of Mat1
{
Matrix res;
for(int ctr=1; ctr <= Mat1.Ncols(); ctr++)
{
ColumnVector tmpCol;
tmpCol=Mat1.Column(ctr);
ColumnVector FtmpCol_real;
ColumnVector FtmpCol_imag;
ColumnVector tmpPow;
RealFFT(tmpCol,FtmpCol_real,FtmpCol_imag);
pow(FtmpCol_real,2);
pow(FtmpCol_imag,2);
tmpPow = FtmpCol_real+FtmpCol_imag;
if(res.Storage()==0){res= tmpPow;}else{res|=tmpPow;}
}
Result=res;
}
void element_mod_n(Matrix& Mat,double n)
{
//represent each element in modulo n (useful for wrapping phases (n=2*M_PI))
double tmp;
for( int j=1;j<=Mat.Ncols();j++){
tmp = ( Mat(i,j) - rounddouble(Mat(i,j)/n)*n );
Mat(i,j)= tmp > 0 ? tmp : tmp + n;
}
}
}
}
Mark Jenkinson
committed
return (int)pow(2,ceil(log(float(n))/log(float(2))));
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
}
void xcorr(const Matrix& p_ts, Matrix& ret, int lag, int p_zeropad)
{
Tracer tr("MISCMATHS::xcorr");
int sizeTS = p_ts.Nrows();
int numTS = p_ts.Ncols();
if(p_zeropad == 0)
p_zeropad = sizeTS;
if(lag == 0)
lag = sizeTS;
ColumnVector x(p_zeropad);
x = 0;
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(p_zeropad);
ColumnVector dummy2;
dummy = 0;
ColumnVector realifft(p_zeropad);
ret.ReSize(lag,numTS);
ret = 0;
for(int i = 1; i <= numTS; i++)
{
x.Rows(1,sizeTS) = p_ts.Column(i);
FFT(x, dummy, fft_real, fft_im);
for(int j = 1; j <= p_zeropad; j++)
{
// (x+iy)(x-iy) = x^2 + y^2
fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
fft_im(j) = 0;
}
FFTI(fft_real, fft_im, realifft, dummy2);
float varx = var(x.Rows(1,sizeTS)).AsScalar();
ret.Column(i) = realifft.Rows(1,lag);
Mark Jenkinson
committed
for(int j = 1; j <= lag-1; j++)
{
// Correction to make autocorr unbiased and normalised
Mark Jenkinson
committed
ret(j,i) = ret(j,i)/((sizeTS-j)*varx);
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
}
}
}
ReturnMatrix xcorr(const Matrix& p_ts, int lag, int p_zeropad )
{
Matrix r;
xcorr(p_ts,r,lag,p_zeropad);
r.Release();
return r;
}
void detrend(Matrix& p_ts, int p_level)
{
Tracer trace("MISCMATHS::detrend");
int sizeTS = p_ts.Nrows();
// p_ts = b*a + e (OLS regression)
// e is detrended data
Matrix a(sizeTS, p_level+1);
// Create a
for(int t = 1; t <= sizeTS; t++)
{
for(int l = 0; l <= p_level; l++)
Mark Jenkinson
committed
a(t,l+1) = pow((float)t/sizeTS,l);
Matrix R = IdentityMatrix(sizeTS)-a*pinv(a);
Mark Jenkinson
committed
for(int t = 1; t <= sizeTS; t++)
Mark Jenkinson
committed
p_ts.Column(t) = R*p_ts.Column(t);
}
}
ReturnMatrix read_vest(string p_fname)
{
ifstream in;
in.open(p_fname.c_str(), ios::in);
if(!in) throw Exception(string("Unable to open "+p_fname).c_str());
int numWaves = 0;
int numPoints = 0;
string str;
while(true)
{
if(!in.good()) throw Exception(string(p_fname+" is not a valid vest file").c_str());
in >> str;
if(str == "/Matrix")
break;
else if(str == "/NumWaves")
{
in >> numWaves;
}
else if(str == "/NumPoints" || str == "/NumContrasts")
{
in >> numPoints;
}
}
Matrix p_mat(numPoints, numWaves);
for(int i = 1; i <= numPoints; i++)
{
for(int j = 1; j <= numWaves; j++)
{
if (!in.eof()) in >> ws >> p_mat(i,j) >> ws;
else throw Exception(string(p_fname+" has insufficient data points").c_str());
}
}
in.close();
p_mat.Release();
return p_mat;
}
void ols(const Matrix& data,const Matrix& des,const Matrix& tc, Matrix& cope,Matrix& varcope){
// ols
// data is t x v
// des is t x ev (design matrix)
// tc is cons x ev (contrast matrix)
// cope and varcope will be cons x v
// but will be resized if they are wrong
// hence may be passed in uninitialised
// TB 2004
if(data.Nrows() != des.Nrows()){
cerr <<"MISCMATHS::ols - data and design have different number of time points"<<endl;
exit(-1);
}
if(des.Ncols() != tc.Ncols()){
cerr <<"MISCMATHS::ols - design and contrast matrix have different number of EVs"<<endl;
exit(-1);
}
Matrix pdes = pinv(des);
Matrix prevar=diag(tc*pdes*pdes.t()*tc.t());
Matrix R=IdentityMatrix(des.Nrows())-des*pdes;
float tR=R.Trace();
Matrix pe=pdes*data;
cope=tc*pe;
Matrix res=data-des*pe;
Matrix sigsq=sum(SP(res,res))/tR;
varcope=prevar*sigsq;
}
if ( des.Nrows() > 4000 ) //Use the simple version as huge designs require too much RAM in the full calculation
return des.Nrows() - des.Ncols();
try {
Matrix R=IdentityMatrix(des.Nrows())-des*pdes;
return R.Trace();}
catch (...) {
cerr << "ols_dof: Error in determining the trace, resorting to basic calculation" << endl;
}
return des.Nrows() - des.Ncols();
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b, int maxit,
float reltol)
{
// solves: A * x = b (for x)
// implementation of algorithm in Golub and Van Loan (3rd ed, page 527)
ColumnVector rk1, rk2, pk, apk;
double betak, alphak, rk1rk1=0, rk2rk2, r00=0;
int k=0;
rk1 = b - A*x; // a *big* calculation
for (int n=1; n<=maxit; n++) {
k++;
if (k==1) {
pk = rk1;
rk1rk1 = (rk1.t() * rk1).AsScalar();
} else {
rk2rk2 = rk1rk1; // from before
rk1rk1 = (rk1.t() * rk1).AsScalar();
if (rk2rk2<1e-10*rk1rk1) {
cerr << "WARNING:: Conj Grad - low demoninator (rk2rk2)" << endl;
if (rk2rk2<=0) {
cerr << "Aborting conj grad ..." << endl;
return 1;
}
}
betak = rk1rk1 / rk2rk2;
pk = rk1 + betak * pk; // note RHS pk is p(k-1) in algorithm
}
// stop if sufficient accuracy is achieved
if (rk1rk1<reltol*reltol*r00) return 0;
apk = A * pk; // the *big* calculation in this algorithm
ColumnVector pap = pk.t() * apk;
if (pap.AsScalar()<0) {
cerr << "ERROR:: Conj Grad - negative eigenvector found (matrix must be symmetric and positive-definite)\nAborting ... " << endl;
return 2;
} else if (pap.AsScalar()<1e-10) {
cerr << "WARNING:: Conj Grad - nearly null eigenvector found (terminating early)" << endl;
return 1;
} else {
alphak = rk1rk1 / pap.AsScalar();
}
x = x + alphak * pk; // note LHS is x(k) and RHS is x(k-1) in algorithm
rk2 = rk1; // update prior to the next step
rk1 = rk1 - alphak * apk; // note LHS is r(k) in algorithm
}
return 0;
}
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b, int maxit)
{
return conjgrad(x,A,b,maxit,1e-10);
}
float csevl(const float x, const ColumnVector& cs, const int n)
{
float b0 = 0;
float b1 = 0;
float b2 = 0;
const float twox=2*x;
for(int i=1; i<=n; i++)
{
b2=b1;
b1=b0;
b0=twox*b1-b2+cs(n+1-i);
}
return 0.5*(b0-b2);
}
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
float digamma(const float x)
{
int ntapsi(16);
int ntpsi(23);
ColumnVector psics(ntpsi);
ColumnVector apsics(ntapsi);
psics << -.038057080835217922E0<<
.49141539302938713E0<<
-.056815747821244730E0<<
.008357821225914313E0<<
-.001333232857994342E0<<
.000220313287069308E0<<
-.000037040238178456E0<<
.000006283793654854E0<<
-.000001071263908506E0<<
.000000183128394654E0<<
-.000000031353509361E0<<
.000000005372808776E0<<
-.000000000921168141E0<<
.000000000157981265E0<<
-.000000000027098646E0<<
.000000000004648722E0<<
-.000000000000797527E0<<
.000000000000136827E0<<
-.000000000000023475E0<<
.000000000000004027E0<<
-.000000000000000691E0<<
.000000000000000118E0<<
-.000000000000000020E0;
apsics <<-.0204749044678185E0<<
-.0101801271534859E0<<
.0000559718725387E0<<
-.0000012917176570E0<<
.0000000572858606E0<<
-.0000000038213539E0<<
.0000000003397434E0<<
-.0000000000374838E0<<
.0000000000048990E0<<
-.0000000000007344E0<<
.0000000000001233E0<<
-.0000000000000228E0<<
.0000000000000045E0<<
-.0000000000000009E0<<
.0000000000000002E0<<
-.0000000000000000E0;
float y = fabs(x);
float psi;
if(y<2.0)
{
// do we need to deal with the following case?
// c psi(x) for -2. .lt. x .lt. 2.
int n = int(floor(x));
y = x - n;
n = n - 1;
psi = csevl(2*y-1, psics, ntpsi);
if(n==-1)
{
psi = psi - 1.0/x;
}
}
else
{
const float aux = csevl(8/(Sqr(y))-1, apsics, ntapsi);
Mark Jenkinson
committed
psi = log(x) - 0.5/x + aux;
void glm_vb(const Matrix& X, const ColumnVector& Y, ColumnVector& B, SymmetricMatrix& ilambda_B, int niters)
// Does Variational Bayes inference on GLM Y=XB+e with ARD priors on B
// design matrix X should be num_tpts*num_evs
/////////////////////
// setup
OUT("Setup");
int ntpts=Y.Nrows();
throw Exception("COCK");
OUT(nevs);
OUT(ntpts);
ColumnVector gam_m(nevs);
gam_m=1e10;
float gam_y;
ColumnVector lambdaB(nevs);
if(nevs<ntpts-10)
// initialise with OLS
B=pinv(X)*Y;
ColumnVector res=Y-X*B;
gam_y=(ntpts-nevs)/(res.t()*res).AsScalar();
ilambda_B << (X.t()*X*gam_y).i();
lambdaB=0;
for(int l=1; l <= nevs; l++)
{
lambdaB(l)=ilambda_B(l,l);
}
else
{
OUT("no ols");
B.ReSize(nevs);
B=0;
lambdaB=1;
// ColumnVector res=Y-X*B;
// gam_y=ntpts/(res.t()*res).AsScalar();
gam_y=10;
}
// OUT(B(1));
// OUT(lambdaB(1));
float trace_ilambdaZZ=1;
SymmetricMatrix ZZ;
float YY=0;
for(int t=1; t <= ntpts; t++)
YY += Sqr(Y(t));
/////////////////////
// iterate
OUT("Iterate");
int i = 1;;
for(; i<=niters; i++)
{
Mark Jenkinson
committed
for(int l=1; l <= nevs; l++)
Mark Jenkinson
committed
float b_m = 1.0/(0.5*(Sqr(B(l))+lambdaB(l))+1.0/b_m0);
gam_m(l) = b_m*c_m;
////////////////////
// update B
ColumnVector beta(nevs);
beta = 0;
SymmetricMatrix lambda_B(nevs);
lambda_B = 0;
Mark Jenkinson
committed
for(int l=1; l <= nevs; l++)
lambda_B(l,l)=gam_m(l);
SymmetricMatrix tmp = lambda_B + gam_y*ZZ;
lambda_B << tmp;
beta += gam_y*ZY;
ilambda_B << lambda_B.i();
lambdaB.ReSize(nevs);
lambdaB=0;
for(int l=1; l <= nevs; l++)
{
lambdaB(l)=ilambda_B(l,l);
}
////////////////////
// compute trace for noise precision phiy update
SymmetricMatrix tmp3;
tmp3 << ilambda_B;
SymmetricMatrix tmp2;
tmp2 << tmp3*ZZ;
trace_ilambdaZZ=tmp2.Trace();
/////////////////////
// update phiy
float b_y0 = 1e10;
float c_y0 = 1;
float sum = YY + (B.t()*ZZ*B).AsScalar() - 2*(B.t()*ZY).AsScalar();
float b_y = 1.0/(0.5*(sum + trace_ilambdaZZ)+1/b_y0);
gam_y = b_y*c_y;
// OUT(gam_y);
}
vector<float> ColumnVector2vector(const ColumnVector& col)
{
vector<float> vec(col.Nrows());
for(int c = 0; c < col.Nrows(); c++)
vec[c] = col(c+1);
return vec;
}
Mark Jenkinson
committed
/////////////////////////////////////////////////////////////////////////////////////////////////////
// Uninteresting byte swapping functions
Mark Jenkinson
committed
typedef struct { unsigned char a,b ; } TWObytes ;
Mark Jenkinson
committed
void Swap_2bytes( int n , void *ar ) /* 2 bytes at a time */
{
register TWObytes *tb = (TWObytes *)ar ;
Mark Jenkinson
committed
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].b ; tb[ii].b = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
typedef struct { unsigned char a,b,c,d ; } FOURbytes ;
Mark Jenkinson
committed
void Swap_4bytes( int n , void *ar ) /* 4 bytes at a time */
{
register int ii ;
register FOURbytes *tb = (FOURbytes *)ar ;
Mark Jenkinson
committed
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].d ; tb[ii].d = tt ;
tt = tb[ii].b ; tb[ii].b = tb[ii].c ; tb[ii].c = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
typedef struct { unsigned char a,b,c,d , D,C,B,A ; } EIGHTbytes ;
Mark Jenkinson
committed
void Swap_8bytes( int n , void *ar ) /* 8 bytes at a time */
{
register int ii ;
register EIGHTbytes *tb = (EIGHTbytes *)ar ;
Mark Jenkinson
committed
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].A ; tb[ii].A = tt ;
tt = tb[ii].b ; tb[ii].b = tb[ii].B ; tb[ii].B = tt ;
tt = tb[ii].c ; tb[ii].c = tb[ii].C ; tb[ii].C = tt ;
tt = tb[ii].d ; tb[ii].d = tb[ii].D ; tb[ii].D = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
typedef struct { unsigned char a,b,c,d,e,f,g,h ,
H,G,F,E,D,C,B,A ; } SIXTEENbytes ;
Mark Jenkinson
committed
void Swap_16bytes( int n , void *ar ) /* 16 bytes at a time */
{
register int ii ;
register SIXTEENbytes *tb = (SIXTEENbytes *)ar ;
Mark Jenkinson
committed
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
register unsigned char tt ;
for( ii=0 ; ii < n ; ii++ ){
tt = tb[ii].a ; tb[ii].a = tb[ii].A ; tb[ii].A = tt ;
tt = tb[ii].b ; tb[ii].b = tb[ii].B ; tb[ii].B = tt ;
tt = tb[ii].c ; tb[ii].c = tb[ii].C ; tb[ii].C = tt ;
tt = tb[ii].d ; tb[ii].d = tb[ii].D ; tb[ii].D = tt ;
tt = tb[ii].e ; tb[ii].e = tb[ii].E ; tb[ii].E = tt ;
tt = tb[ii].f ; tb[ii].f = tb[ii].F ; tb[ii].F = tt ;
tt = tb[ii].g ; tb[ii].g = tb[ii].G ; tb[ii].G = tt ;
tt = tb[ii].h ; tb[ii].h = tb[ii].H ; tb[ii].H = tt ;
}
return ;
}
/*---------------------------------------------------------------------------*/
void Swap_Nbytes( int n , int siz , void *ar ) /* subsuming case */
{
switch( siz ){
case 2: Swap_2bytes ( n , ar ) ; break ;
case 4: Swap_4bytes ( n , ar ) ; break ;
case 8: Swap_8bytes ( n , ar ) ; break ;
case 16: Swap_16bytes( n , ar ) ; break ;
}
return ;
}
// end namespace MISCMATHS
}