Skip to content
Snippets Groups Projects
09_pandas.ipynb 37.6 KiB
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.loc['First']\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "More advanced use of the `MultiIndex` is possible through `xs`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.xs(0, level='survived') # selects all the zero's from the survived index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.xs('mad', axis=1, level=1) # selects mad from the second level in the columns (i.e., axis=1) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Reshaping tables"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If we were interested in how the survival rate depends on the class and sex of the passengers we could simply use a groupby:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'sex']).survived.mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "However, this single-column table is difficult to read. The reason for this is that the indexing is multi-leveled (called `MultiIndex` in pandas), while there is only a single column. We would like to move one of the levels in the index to the columns. This can be done using `stack`/`unstack`:\n",
    "- `unstack`: Moves one levels in the index to the columns\n",
    "- `stack`: Moves one of levels in the columns to the index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'sex']).survived.mean().unstack('sex')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The former table, where the different groups are defined in different rows, is often referred to as long-form. After unstacking the table is often referred to as wide-form as the different group (sex in this case) is now represented as different columns. In pandas some operations are easier on long-form tables (e.g., `groupby`) while others require wide_form tables (e.g., making scatter plots of two variables). You can go back and forth using `unstack` or `stack` as illustrated above, but as this is a crucial part of pandas there are many alternatives, such as `pivot_table`, `melt`, and `wide_to_long`, which we will discuss below.\n",
    "\n",
    "We can prettify the table further using seaborn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "ax = sns.heatmap(titanic.groupby(['class', 'sex']).survived.mean().unstack('sex'), \n",
    "                 annot=True)\n",
    "ax.set_title('survival rate')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that there are also many ways to produce prettier tables in pandas (e.g., color all the negative values). This is documented [here](http://pandas.pydata.org/pandas-docs/stable/style.html)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Because this stacking/unstacking is fairly common after a groupby operation, there is a shortcut for it: `pivot_table`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.pivot_table('survived', 'class', 'sex')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As usual in pandas, where we can also provide multiple column names"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.heatmap(titanic.pivot_table('survived', ['class', 'embark_town'], ['sex', pd.cut(titanic.age, (0, 18, np.inf))]), annot=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also change the function to be used to aggregate the data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.heatmap(titanic.pivot_table('survived', ['class', 'embark_town'], ['sex', pd.cut(titanic.age, (0, 18, np.inf))], \n",
    "                                aggfunc='count'), annot=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As in `groupby` the aggregation function can be a string of a common aggregation function, or any function that should be applied.\n",
    "\n",
    "We can even apply different aggregate functions to different columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.pivot_table(index='class', columns='sex',  \n",
    "                    aggfunc={'survived': 'count', 'fare': np.mean}) # compute number of survivors and mean fare\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The opposite of `pivot_table` is `melt`. This can be used to change a wide-form table into a long-form table. This is not particularly useful on the titanic dataset, so let's create a new table where this might be useful. Let's say we have a dataset listing the FA and MD values in various WM tracts:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "tracts = ('Corpus callosum', 'Internal capsule', 'SLF', 'Arcuate fasciculus')\n",
    "df_wide = pd.DataFrame.from_dict(dict({'subject': list('ABCDEFGHIJ')}, **{\n",
    "    f'FA({tract})': np.random.rand(10) for tract in tracts }, **{\n",
    "    f'MD({tract})': np.random.rand(10) * 1e-3 for tract in tracts\n",
    "}))\n",
    "df_wide"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This wide-form table (i.e., all the information is in different columns) makes it hard to select just all the FA values or only the values associated with the SLF. For this it would be easier to lismt all the values in a single column. Most of the tools discussed above (e.g., `group_by` or `seaborn` plotting) work better with long-form data, which we can obtain from `melt`: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_long = df_wide.melt('subject', var_name='measurement', value_name='dti_value')\n",
    "df_long.head(12)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can see that `melt` took all the columns (we could also have specified a specific sub-set) and returned each measurement as a seperate row. We probably want to seperate the measurement column into the measurement type (FA or MD) and the tract name. Many string manipulation function are available in the `DataFrame` object under `DataFrame.str` ([tutorial](http://pandas.pydata.org/pandas-docs/stable/text.html))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_long['variable'] = df_long.measurement.str.slice(0, 2)  # first two letters correspond to FA or MD\n",
    "df_long['tract'] = df_long.measurement.str.slice(3, -1)  # fourth till the second-to-last letter correspond to the tract\n",
    "df_long.head(12)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally we probably do want the FA and MD variables as different columns. \n",
    "\n",
    "*Exercise*: Use `pivot_table` or `stack`/`unstack` to create a column for MD and FA."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_unstacked = df_long."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can now use the tools discussed above to visualize the table (`seaborn`) or to group the table based on tract (`groupby` or `pivot_table`)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# feel free to analyze this random data in more detail"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In general pandas is better at handling long-form than wide-form data, although for better visualization of the data an intermediate format is often best. One exception is calculating a covariance (`DataFrame.cov`) or correlation (`DataFrame.corr`) matrices which computes the correlation between each column:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.heatmap(df_wide.corr(), cmap=sns.diverging_palette(240, 10, s=99, n=300), )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Linear fitting (statsmodels)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Linear fitting between the different columns is available through the [statsmodels](https://www.statsmodels.org/stable/index.html) library. A nice way to play around with a wide variety of possible models is to use R-style functions. The usage of the functions in stastmodels is described [here](https://www.statsmodels.org/dev/example_formulas.html). You can find a more detailed description of the R-style functions [here](https://patsy.readthedocs.io/en/latest/formulas.html#the-formula-language). \n",
    "\n",
    "In short these functions describe the linear model as a string. For example, \"y ~ x + a + x * a\" fits the variable `y` as a function of `x`, `a`, and the interaction between `x` and `a`. The intercept is included by default (you can add \"+ 0\" to remove it)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "result = smf.logit('survived ~ age + sex + age * sex', data=titanic).fit()\n",
    "print(result.summary())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that statsmodels understands categorical variables and automatically replaces them with dummy variables.\n",
    "\n",
    "Above we used logistic regression, which is appropriate for the binary survival rate. A wide variety of linear models are available. Let's try a GLM, but assume that the fare is drawn from a Gamma distribution:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "age_dmean = titanic.age - titanic.age.mean()\n",
    "result = smf.glm('fare ~ age_dmean + embark_town', data=titanic).fit()\n",
    "print(result.summary())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Cherbourg passengers clearly paid a lot more...\n",
    "\n",
    "\n",
    "Note that we did not actually add the age_dmean to the dataframe. Statsmodels (or more precisely the underlying [patsy](https://patsy.readthedocs.io/en/latest/) library) automatically extracted this from our environment. This can lead to confusing behaviour..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# More reading"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Other useful features\n",
    "- [Concatenating](https://jakevdp.github.io/PythonDataScienceHandbook/03.06-concat-and-append.html) and [merging](https://jakevdp.github.io/PythonDataScienceHandbook/03.07-merge-and-join.html) of tables\n",
    "- [Lots of](http://pandas.pydata.org/pandas-docs/stable/basics.html#dt-accessor) [time](http://pandas.pydata.org/pandas-docs/stable/timeseries.html) [series](http://pandas.pydata.org/pandas-docs/stable/timedeltas.html) support\n",
    "- [Rolling Window functions](http://pandas.pydata.org/pandas-docs/stable/computation.html#window-functions) for after you have meaningfully sorted your data\n",
    "- and much, much more"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.2"
  },
  "toc": {
   "colors": {
    "hover_highlight": "#DAA520",
    "running_highlight": "#FF0000",
    "selected_highlight": "#FFD700"
   },
   "moveMenuLeft": true,
   "nav_menu": {
    "height": "225px",
    "width": "252px"
   },
   "navigate_menu": true,
   "number_sections": true,
   "sideBar": true,
   "threshold": 4,
   "toc_cell": false,
   "toc_section_display": "block",
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}