Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
"collapsed": true
},
"outputs": [],
"source": [
"df_full.loc['First']\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"More advanced use of the `MultiIndex` is possible through `xs`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df_full.xs(0, level='survived') # selects all the zero's from the survived index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df_full.xs('mad', axis=1, level=1) # selects mad from the second level in the columns (i.e., axis=1) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reshaping tables"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we were interested in how the survival rate depends on the class and sex of the passengers we could simply use a groupby:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"titanic.groupby(['class', 'sex']).survived.mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, this single-column table is difficult to read. The reason for this is that the indexing is multi-leveled (called `MultiIndex` in pandas), while there is only a single column. We would like to move one of the levels in the index to the columns. This can be done using `stack`/`unstack`:\n",
"- `unstack`: Moves one levels in the index to the columns\n",
"- `stack`: Moves one of levels in the columns to the index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"titanic.groupby(['class', 'sex']).survived.mean().unstack('sex')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The former table, where the different groups are defined in different rows, is often referred to as long-form. After unstacking the table is often referred to as wide-form as the different group (sex in this case) is now represented as different columns. In pandas some operations are easier on long-form tables (e.g., `groupby`) while others require wide_form tables (e.g., making scatter plots of two variables). You can go back and forth using `unstack` or `stack` as illustrated above, but as this is a crucial part of pandas there are many alternatives, such as `pivot_table`, `melt`, and `wide_to_long`, which we will discuss below.\n",
"\n",
"We can prettify the table further using seaborn"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"ax = sns.heatmap(titanic.groupby(['class', 'sex']).survived.mean().unstack('sex'), \n",
" annot=True)\n",
"ax.set_title('survival rate')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that there are also many ways to produce prettier tables in pandas (e.g., color all the negative values). This is documented [here](http://pandas.pydata.org/pandas-docs/stable/style.html)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because this stacking/unstacking is fairly common after a groupby operation, there is a shortcut for it: `pivot_table`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"titanic.pivot_table('survived', 'class', 'sex')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As usual in pandas, where we can also provide multiple column names"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"sns.heatmap(titanic.pivot_table('survived', ['class', 'embark_town'], ['sex', pd.cut(titanic.age, (0, 18, np.inf))]), annot=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also change the function to be used to aggregate the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"sns.heatmap(titanic.pivot_table('survived', ['class', 'embark_town'], ['sex', pd.cut(titanic.age, (0, 18, np.inf))], \n",
" aggfunc='count'), annot=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As in `groupby` the aggregation function can be a string of a common aggregation function, or any function that should be applied.\n",
"\n",
"We can even apply different aggregate functions to different columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"titanic.pivot_table(index='class', columns='sex', \n",
" aggfunc={'survived': 'count', 'fare': np.mean}) # compute number of survivors and mean fare\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The opposite of `pivot_table` is `melt`. This can be used to change a wide-form table into a long-form table. This is not particularly useful on the titanic dataset, so let's create a new table where this might be useful. Let's say we have a dataset listing the FA and MD values in various WM tracts:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tracts = ('Corpus callosum', 'Internal capsule', 'SLF', 'Arcuate fasciculus')\n",
"df_wide = pd.DataFrame.from_dict(dict({'subject': list('ABCDEFGHIJ')}, **{\n",
" f'FA({tract})': np.random.rand(10) for tract in tracts }, **{\n",
" f'MD({tract})': np.random.rand(10) * 1e-3 for tract in tracts\n",
"}))\n",
"df_wide"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This wide-form table (i.e., all the information is in different columns) makes it hard to select just all the FA values or only the values associated with the SLF. For this it would be easier to lismt all the values in a single column. Most of the tools discussed above (e.g., `group_by` or `seaborn` plotting) work better with long-form data, which we can obtain from `melt`: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df_long = df_wide.melt('subject', var_name='measurement', value_name='dti_value')\n",
"df_long.head(12)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that `melt` took all the columns (we could also have specified a specific sub-set) and returned each measurement as a seperate row. We probably want to seperate the measurement column into the measurement type (FA or MD) and the tract name. Many string manipulation function are available in the `DataFrame` object under `DataFrame.str` ([tutorial](http://pandas.pydata.org/pandas-docs/stable/text.html))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df_long['variable'] = df_long.measurement.str.slice(0, 2) # first two letters correspond to FA or MD\n",
"df_long['tract'] = df_long.measurement.str.slice(3, -1) # fourth till the second-to-last letter correspond to the tract\n",
"df_long.head(12)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally we probably do want the FA and MD variables as different columns. \n",
"\n",
"*Exercise*: Use `pivot_table` or `stack`/`unstack` to create a column for MD and FA."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df_unstacked = df_long."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now use the tools discussed above to visualize the table (`seaborn`) or to group the table based on tract (`groupby` or `pivot_table`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# feel free to analyze this random data in more detail"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In general pandas is better at handling long-form than wide-form data, although for better visualization of the data an intermediate format is often best. One exception is calculating a covariance (`DataFrame.cov`) or correlation (`DataFrame.corr`) matrices which computes the correlation between each column:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"sns.heatmap(df_wide.corr(), cmap=sns.diverging_palette(240, 10, s=99, n=300), )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Linear fitting (statsmodels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Linear fitting between the different columns is available through the [statsmodels](https://www.statsmodels.org/stable/index.html) library. A nice way to play around with a wide variety of possible models is to use R-style functions. The usage of the functions in stastmodels is described [here](https://www.statsmodels.org/dev/example_formulas.html). You can find a more detailed description of the R-style functions [here](https://patsy.readthedocs.io/en/latest/formulas.html#the-formula-language). \n",
"\n",
"In short these functions describe the linear model as a string. For example, \"y ~ x + a + x * a\" fits the variable `y` as a function of `x`, `a`, and the interaction between `x` and `a`. The intercept is included by default (you can add \"+ 0\" to remove it)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"result = smf.logit('survived ~ age + sex + age * sex', data=titanic).fit()\n",
"print(result.summary())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that statsmodels understands categorical variables and automatically replaces them with dummy variables.\n",
"\n",
"Above we used logistic regression, which is appropriate for the binary survival rate. A wide variety of linear models are available. Let's try a GLM, but assume that the fare is drawn from a Gamma distribution:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"age_dmean = titanic.age - titanic.age.mean()\n",
"result = smf.glm('fare ~ age_dmean + embark_town', data=titanic).fit()\n",
"print(result.summary())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cherbourg passengers clearly paid a lot more...\n",
"\n",
"\n",
"Note that we did not actually add the age_dmean to the dataframe. Statsmodels (or more precisely the underlying [patsy](https://patsy.readthedocs.io/en/latest/) library) automatically extracted this from our environment. This can lead to confusing behaviour..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# More reading"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Other useful features\n",
"- [Concatenating](https://jakevdp.github.io/PythonDataScienceHandbook/03.06-concat-and-append.html) and [merging](https://jakevdp.github.io/PythonDataScienceHandbook/03.07-merge-and-join.html) of tables\n",
"- [Lots of](http://pandas.pydata.org/pandas-docs/stable/basics.html#dt-accessor) [time](http://pandas.pydata.org/pandas-docs/stable/timeseries.html) [series](http://pandas.pydata.org/pandas-docs/stable/timedeltas.html) support\n",
"- [Rolling Window functions](http://pandas.pydata.org/pandas-docs/stable/computation.html#window-functions) for after you have meaningfully sorted your data\n",
"- and much, much more"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "225px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}