Skip to content
Snippets Groups Projects
09_pandas.ipynb 37.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Pandas"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Pandas is a data analysis library focussed on the cleaning and exploration of tabular data.\n",
    "\n",
    "Some useful links are:\n",
    "- [main website](https://pandas.pydata.org)\n",
    "- [documentation](http://pandas.pydata.org/pandas-docs/stable/)<sup>1</sup>\n",
    "- [Python Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/)<sup>1</sup> by Jake van der Plas\n",
    "\n",
    "<sup>1</sup> This tutorial borrows heavily from the pandas documentation and the Python Data Science Handbook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pylab inline\n",
    "import pandas as pd  # pd is the usual abbreviation for pandas\n",
    "import seaborn as sns  # seaborn is the main plotting library for Pandas\n",
    "import statsmodels.api as sm  # statsmodels fits linear models to pandas data\n",
    "import statsmodels.formula.api as smf\n",
    "from IPython.display import Image\n",
    "sns.set()  # use the prettier seaborn plotting settings rather than the default matplotlib one"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Loading in data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Pandas supports a wide range of I/O tools to load from text files, binary files, and SQL databases. You can find a table with all formats [here](http://pandas.pydata.org/pandas-docs/stable/io.html)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/titanic.csv')\n",
    "titanic"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This loads the data into a [DataFrame](https://pandas.pydata.org/pandas-docs/version/0.21/generated/pandas.DataFrame.html) object, which is the main object we will be interacting with in pandas. It represents a table of data.\n",
    "\n",
    "The other file formats all start with `pd.read_{format}`.  Note that we can provide the URL to the dataset, rather than download it beforehand.\n",
    "\n",
    "We can write out the dataset using `dataframe.to_{format}(<filename)`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.to_csv('titanic_copy.csv', index=False)  # we set index to False to prevent pandas from storing the row names"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you can not connect to the internet, you can run the command below to load this locally stored titanic dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "titanic = pd.read_csv('09_pandas/titanic.csv')\n",
    "titanic"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the titanic dataset was also available to us as one of the standard datasets included with seaborn. We could load it from there using"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.load_dataset('titanic')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Dataframes can also be created from other python objects, using pd.DataFrame.from_{other type}. The most useful of these is from_dict, which converts a mapping of the columns to a pandas DataFrame (i.e., table).\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "pd.DataFrame.from_dict({\n",
    "    'random numbers': np.random.rand(5),\n",
    "    'sequence (int)': np.arange(5),\n",
    "    'sequence (float)': np.linspace(0, 5, 5),\n",
    "    'letters': list('abcde'),\n",
    "    'constant_value': 'same_value'\n",
    "})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For many applications (e.g., ICA, machine learning input) you might want to extract your data as a numpy array. The underlying numpy array can be accessed using the `values` attribute"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.values"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the type of the returned array is the most common type (in this case object). If you just want the numeric parts of the table you can use `select_dtype`, which selects specific columns based on their dtype:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.select_dtypes(include=np.number).values"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the numpy array has no information on the column names or row indices.\n",
    "\n",
    "Alternatively, when you want to include the categorical variables in your later analysis (e.g., for machine learning), you can extract dummy variables using: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "pd.get_dummies(titanic)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Accessing parts of the data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[Documentation on indexing](http://pandas.pydata.org/pandas-docs/stable/indexing.html)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting columns by name"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Single columns can be selected using the normal python indexing:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic['embark_town']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If the column names are simple strings (not required) we can also access it directly as an attribute"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.embark_town"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that this returns a pandas [Series](https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Series.html) rather than a DataFrame object. A Series is simply a 1-dimensional array representing a single column.\n",
    "\n",
    "Multiple columns can be returned by providing a list of columns names. This will return a DataFrame:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[['class', 'alive']]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that you have to provide a list here (square brackets). If you provide a tuple (round brackets) pandas will think you are trying to access a single column that has that tuple as a name:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[('class', 'alive')]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this case there is no column called ('class', 'alive') leading to an error. Later on we will see some uses to having columns named like this."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Indexing rows by name or integer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Individual rows can be accessed based on their name (i.e., the index) or integer (i.e., which row it is in). In our current table this will give the same results. To ensure that these are different, let's sort our titanic dataset based on the passenger fare:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted = titanic.sort_values('fare')\n",
    "titanic_sorted"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the re-sorting did not change the values in the index (i.e., left-most column).\n",
    "\n",
    "We can select the first row of this newly sorted table using iloc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.iloc[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can select the row with the index 0 using"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.loc[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that this gives the same passenger as the first row of the initial table before sorting"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.iloc[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another common way to access the first or last N rows of a table is using the head/tail methods"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.head(3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.tail(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that nearly all methods in pandas return a new Dataframe, which means that we can easily call another method on them"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.tail(10).head(5)  # select the first 5 of the last 10 passengers in the database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic_sorted.iloc[-10:-5]  # alternative way to get the same passengers"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: use sorting and tail/head or indexing to find the 10 youngest passengers on the titanic. Try to do this on a single line by chaining calls to the titanic dataframe object"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.sort_values..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Indexing rows by value"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One final way to select specific columns is by their value"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[titanic.sex == 'female']  # selects all females"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# select all passengers older than 60 who departed from Southampton\n",
    "titanic[(titanic.age > 60) & (titanic['embark_town'] == 'Southampton')]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that this required typing \"titanic\" quite often. A quicker way to get the same result is using the `query` method, which is described in detail [here](http://pandas.pydata.org/pandas-docs/stable/indexing.html#the-query-method) (note that using the `query` method is also faster and uses a lot less memory).\n",
    "\n",
    "> You may have trouble using the query method with columns which have a name that cannot be used as a Python identifier."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.query('(age > 60) & (embark_town == \"Southampton\")')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Particularly useful when selecting data like this is the `isna` method which finds all missing data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic[~titanic.age.isna()]  # select first few passengers whose age is not N/A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This removing of missing numbers is so common that it has is own method"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.dropna()  # drops all passengers that have some datapoint missing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.dropna(subset=['age', 'fare'])  # Only drop passengers with missing ages or fares"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: use sorting, indexing by value, dropna and tail/head or indexing to find the 10 oldest female passengers on the titanic. Try to do this on a single line by chaining calls to the titanic dataframe object"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Plotting the data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before we start analyzing the data, let's play around with visualizing it. \n",
    "\n",
    "Pandas does have some basic built-in plotting options:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.fare.hist(bins=20, log=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.age.plot()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Individual columns are essentially 1D arrays, so we can use them as such in matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "plt.scatter(titanic.age, titanic.fare)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "However, for most purposes much nicer plots can be obtained using [Seaborn](https://seaborn.pydata.org). Seaborn has support to produce plots showing the [univariate](https://seaborn.pydata.org/tutorial/distributions.html#plotting-univariate-distributions) or [bivariate](https://seaborn.pydata.org/tutorial/distributions.html#plotting-bivariate-distributions) distribution of data in a single or a grid of plots.\n",
    "\n",
    "Most of the seaborn plotting functions expect to get a pandas dataframe (although they will work with Numpy arrays as well). So we can plot age vs. fare like:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.jointplot('age', 'fare', data=titanic)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: check the documentation from `sns.jointplot` (hover the mouse over the text \"jointplot\" and press shift-tab) to find out how to turn the scatter plot into a density (kde) map"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.jointplot('age', 'fare', data=titanic, ...)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is just a brief example of how we can use multiple columns to illustrate the data in more detail"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.relplot(x='age', y='fare', col='class', hue='sex', data=titanic,\n",
    "           col_order=('First', 'Second', 'Third'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Exercise: Split the plot above into two rows with the first row including the passengers who survived and the second row those who did not (you might have to check the documentation again by using shift-tab while overing the mouse over `relplot`) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.relplot(x='age', y='fare', col='class', hue='sex', data=titanic,\n",
    "           col_order=('First', 'Second', 'Third')...)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One of the nice thing of Seaborn is how easy it is to update how these plots look. You can read more about that [here](https://seaborn.pydata.org/tutorial/aesthetics.html). For example, to increase the font size to get a plot more approriate for a talk, you can use:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sns.set_context('talk')\n",
    "sns.violinplot(x='class', y='age', hue='sex', data=titanic, split=True, \n",
    "               order=('First', 'Second', 'Third'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Summarizing the data (mean, std, etc.)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There are a large number of built-in methods to summarize the observations in a Pandas dataframe. Most of these will return a Series with the columns names as index:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.quantile(0.75)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One very useful one is `describe`, which gives an overview of many common summary measures"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.describe()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that non-numeric columns are ignored when summarizing data in this way.\n",
    "\n",
    "We can also define our own functions to apply to the columns (in this case we have to explicitly set the data types)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def mad(series):\n",
    "    \"\"\"\n",
    "    Computes the median absolute deviatation (MAD)\n",
    "    \n",
    "    This is a outlier-resistant measure of the standard deviation\n",
    "    \"\"\"\n",
    "    no_nan = series.dropna()\n",
    "    return np.median(abs(no_nan - np.nanmedian(no_nan)))\n",
    "\n",
    "titanic.select_dtypes(np.number).apply(mad)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also provide multiple functions to the `apply` method (note that functions can be provided as strings)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.select_dtypes(np.number).apply(['mean', np.median, np.std, mad])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Grouping by"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One of the more powerful features of is `groupby`, which splits the dataset on a categorical variable. The book contains a clear tutorial on that feature [here](https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html). You can check the pandas documentation [here](http://pandas.pydata.org/pandas-docs/stable/groupby.html) for a more formal introduction. One simple use is just to put it into a loop"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "for cls, part_table in titanic.groupby('class'):\n",
    "    print(f'Mean fare in {cls.lower()} class: {part_table.fare.mean()}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "However, it is more often combined with one of the aggregation functions discussed above as illustrated in this figure from the [Python data science handbook](https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html#Split-Apply-Combine)\n",
    "\n",
    "![group by image](09_pandas/group_by.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby('class').mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also group by multiple variables at once"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'survived']).mean()  # as always in pandas supply multiple column names as lists, not tuples"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "When grouping it can help to use the `cut` method to split a continuous variable into a categorical one"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', pd.cut(titanic.age, bins=(0, 18, 50, np.inf))]).mean()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use the `aggregate` method to apply a different function to each series"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "titanic.groupby(['class', 'survived']).aggregate((np.median, mad))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that both the index (on the left) and the column names (on the top) now have multiple levels. Such a multi-level index is referred to as `MultiIndex`. This does complicate selecting specific columns/rows. You can read more of using `MultiIndex` [here](http://pandas.pydata.org/pandas-docs/stable/advanced.html).\n",
    "\n",
    "The short version is that columns can be selected using direct indexing (as discussed above)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full = titanic.groupby(['class', 'survived']).aggregate((np.median, mad))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full[('age', 'median')]  # selects median age column; note that the round brackets are optional"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full['age']  # selects both age columns"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Remember that indexing based on the index was done through `loc`. The rest is the same as for the columns above"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df_full.loc[('First', 0)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {