Newer
Older
#!/usr/bin/env python
#
# featanalysis.py - Utility functions for loading/querying the contents of
# a FEAT analysis directory.
#
# Author: Paul McCarthy <pauldmccarthy@gmail.com>
#
"""This module provides a few utility functions for loading/querying the
contents of a FEAT analysis directory. They are primarily for use by the
:class:`.FEATImage` class, but are available for other uses if needed. The
following functions are provided:
.. autosummary::
:nosignatures:
isFEATImage
hasMelodicDir
getAnalysisDir
getTopLevelAnalysisDir
isFirstLevelAnalysis
loadDesign
loadContrasts
loadSettings
getThresholds
loadClusterResults
The following functions return the names of various files of interest:
.. autosummary::
:nosignatures:
getDataFile
getResidualFile
getMelodicFile
getPEFile
getCOPEFile
getZStatFile
getClusterMaskFile
"""
import collections
import logging
import os.path as op
import numpy as np
import fsl.utils.path as fslpath
import fsl.transform.affine as affine
from . import image as fslimage
from . import featdesign
log = logging.getLogger(__name__)
def isFEATImage(path):
"""Returns ``True`` if the given path looks like it is the input data to
a FEAT analysis, ``False`` otherwise.
try:
path = fslimage.addExt(path, mustExist=True)
return False
dirname = op.dirname( path)
return filename.startswith('filtered_func_data') and isFEATDir(dirname)
def isFEATDir(path):
"""Returns ``True`` if the given path looks like a FEAT directory, or
looks like the input data for a FEAT analysis, ``False`` otherwise. A
FEAT directory:
- Must be named ``*.feat``.
- Must contain a file called ``filtered_func_data.nii.gz``.
- Must contain a file called ``design.fsf``.
- Must contain a file called ``design.mat``.
- Must contain a file called ``design.con``.
:arg path: A file / directory path.
"""
path = op.abspath(path)
if op.isdir(path): dirname = path
else: dirname = op.dirname(path)
if not dirname.endswith('.feat'):
return False
try:
fslimage.addExt(op.join(dirname, 'filtered_func_data'), mustExist=True)
Paul McCarthy
committed
except fslimage.PathError:
return False
if not op.exists(op.join(dirname, 'design.fsf')): return False
if not op.exists(op.join(dirname, 'design.mat')): return False
if not op.exists(op.join(dirname, 'design.con')): return False
return True
def hasStats(featdir):
"""Returns ``True`` if it looks like statistics have been calculated
for the given FEAT analysis, ``False`` otherwise.
"""
try:
getZStatFile(featdir, 0)
return True
def hasMelodicDir(featdir):
"""Returns ``True`` if the data for the given FEAT directory has had
MELODIC run on it, ``False`` otherwise.
"""
return op.exists(getMelodicFile(featdir))
def getAnalysisDir(path):
"""If the given path is contained within a FEAT directory, the path
to that FEAT directory is returned. Otherwise, ``None`` is returned.
"""
featdir = fslpath.deepest(path, ['.feat'])
if featdir is not None and isFEATDir(featdir):
return featdir
return None
def getTopLevelAnalysisDir(path):
"""If the given path is contained within a hierarchy of FEAT or MELODIC
directories, the path to the highest-level (i.e. the shallowest in the
file system) directory is returned. Otherwise, ``None`` is returned.
"""
return fslpath.shallowest(path, ['.ica', '.gica', '.feat', '.gfeat'])
def getReportFile(featdir):
"""Returns the path to the FEAT report index file, or ``None`` if there
is no report.
"""
report = op.join(featdir, 'report.html')
if op.exists(report): return report
else: return None
def loadContrasts(featdir):
"""Loads the contrasts from a FEAT directory. Returns a tuple containing:
- A list of names, one for each contrast.
- A list of contrast vectors (each of which is a list itself).
:arg featdir: A FEAT directory.
"""
matrix = None
numContrasts = 0
names = {}
designcon = op.join(featdir, 'design.con')
log.debug('Loading FEAT contrasts from {}'.format(designcon))
with open(designcon, 'rt') as f:
while True:
line = f.readline().strip()
if line.startswith('/ContrastName'):
tkns = line.split(None, 1)
num = [c for c in tkns[0] if c.isdigit()]
num = int(''.join(num))
# The /ContrastName field may not
# actually have a name specified
if len(tkns) > 1:
name = tkns[1].strip()
names[num] = name
elif line.startswith('/NumContrasts'):
numContrasts = int(line.split()[1])
elif line == '/Matrix':
break
matrix = np.loadtxt(f, ndmin=2)
if matrix is None or \
numContrasts != matrix.shape[0]:
raise RuntimeError('{} does not appear to be a '
'valid design.con file'.format(designcon))
# Fill in any missing contrast names
if len(names) != numContrasts:
for i in range(numContrasts):
if i + 1 not in names:
names[i + 1] = str(i + 1)
names = [names[c + 1] for c in range(numContrasts)]
contrasts = []
for row in matrix:
contrasts.append(list(row))
return names, contrasts
def loadSettings(featdir):
"""Loads the analysis settings from a FEAT directory.
Returns a dict containing the settings specified in the ``design.fsf``
file within the directory
:arg featdir: A FEAT directory.
"""
settings = collections.OrderedDict()
designfsf = op.join(featdir, 'design.fsf')
log.debug('Loading FEAT settings from {}'.format(designfsf))
with open(designfsf, 'rt') as f:
for line in f.readlines():
line = line.strip()
if not line.startswith('set '):
continue
tkns = line.split(None, 2)
key = tkns[1].strip()
val = tkns[2].strip(' \'"')
if key.startswith('fmri(') and key.endswith(')'):
key = key[5:-1]
settings[key] = val
return settings
def loadDesign(featdir, settings):
"""Loads the design matrix from a FEAT directory.
:arg featdir: A FEAT directory.
:arg settings: Dictionary containing FEAT settings (see
:func:`loadSettings`).
:returns: a :class:`.FEATFSFDesign` instance which represents the
design matrix.
"""
return featdesign.FEATFSFDesign(featdir, settings)
def getThresholds(settings):
"""Given a FEAT settings dictionary, returns a dictionary of
``{stat : threshold}`` mappings, containing the thresholds used
in the FEAT statistical analysis.
The following keys will be present. Threshold values will be ``None``
if the respective statistical thresholding was not carried out:
- ``p``: P-value thresholding
- ``z``: Z-statistic thresholding
:arg settings: A FEAT settings dictionary (see :func:`loadSettings`).
"""
p = settings.get('prob_thresh', None)
z = settings.get('z_thresh', None)
if p is not None: p = float(p)
if z is not None: z = float(z)
return {'p' : p, 'z' : z}
def isFirstLevelAnalysis(settings):
"""Returns ``True`` if the FEAT analysis described by ``settings``
is a first level analysis, ``False`` otherwise.
:arg settings: A FEAT settings dictionary (see :func:`loadSettings`).
"""
return settings['level'] == '1'
def loadClusterResults(featdir, settings, contrast):
"""If cluster thresholding was used in the FEAT analysis, this function
will load and return the cluster results for the specified (0-indexed)
contrast number.
If there are no cluster results for the given contrast, ``None`` is
returned.
An error will be raised if the cluster file cannot be parsed.
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
:arg featdir: A FEAT directory.
:arg settings: A FEAT settings dictionary.
:arg contrast: 0-indexed contrast number.
:returns: A list of ``Cluster`` instances, each of which contains
information about one cluster. A ``Cluster`` object has the
following attributes:
============ =========================================
``index`` Cluster index.
``nvoxels`` Number of voxels in cluster.
``p`` Cluster p value.
``logp`` :math:`-log_{10}` of the cluster P value.
``zmax`` Maximum Z value in cluster.
``zmaxx`` X voxel coordinate of maximum Z value.
``zmaxy`` Y voxel coordinate of maximum Z value.
``zmaxz`` Z voxel coordinate of maximum Z value.
``zcogx`` X voxel coordinate of cluster centre of
gravity.
``zcogy`` Y voxel coordinate of cluster centre of
gravity.
``zcogz`` Z voxel coordinate of cluster centre of
gravity.
``copemax`` Maximum COPE value in cluster.
``copemaxx`` X voxel coordinate of maximum COPE value.
``copemaxy`` Y voxel coordinate of maximum COPE value.
``copemaxz`` Z voxel coordinate of maximum COPE value.
``copemean`` Mean COPE of all voxels in the cluster.
============ =========================================
# Cluster files are named like
# 'cluster_zstatX.txt', where
# X is the COPE number. And
# the ZMax/COG etc coordinates
# are usually in voxel coordinates
coordXform = np.eye(4)
clusterFile = op.join(
featdir, 'cluster_zstat{}.txt'.format(contrast + 1))
if not op.exists(clusterFile):
# If the analysis was performed in standard
# space (e.g. a higher level group analysis),
# the cluster file will instead be called
# 'cluster_zstatX_std.txt', so we'd better
# check for that too.
clusterFile = op.join(
featdir, 'cluster_zstat{}_std.txt'.format(contrast + 1))

Paul McCarthy
committed
if not op.exists(clusterFile):
return None
# In higher levle analysis run in some standard
# space, the cluster coordinates are in standard
# space. We transform them to voxel coordinates.
# later on.
coordXform = fslimage.Image(
getDataFile(featdir),
loadData=False).worldToVoxMat
log.debug('Loading cluster results for contrast {} from {}'.format(
contrast, clusterFile))
# The cluster.txt file is converted
# into a list of Cluster objects,
# each of which encapsulates
# information about one cluster.
class Cluster(object):
def __init__(self, **kwargs):
for name, val in kwargs.items():
attrName = colmap[name]
if val is not None:
val = float(val)
setattr(self, attrName, val)
# if cluster thresholding was not used,
# the cluster table will not contain
# P valuse.
if not hasattr(self, 'p'): self.p = 1.0
if not hasattr(self, 'logp'): self.logp = 0.0
# This dict provides a mapping between
# Cluster object attribute names, and
# the corresponding column name in the
# cluster.txt file.
'Cluster Index' : 'index',
'Voxels' : 'nvoxels',
'P' : 'p',
'-log10(P)' : 'logp',
'Z-MAX' : 'zmax',
'Z-MAX X (vox)' : 'zmaxx',
'Z-MAX Y (vox)' : 'zmaxy',
'Z-MAX Z (vox)' : 'zmaxz',
'Z-COG X (vox)' : 'zcogx',
'Z-COG Y (vox)' : 'zcogy',
'Z-COG Z (vox)' : 'zcogz',
'Z-MAX X (mm)' : 'zmaxx',
'Z-MAX Y (mm)' : 'zmaxy',
'Z-MAX Z (mm)' : 'zmaxz',
'Z-COG X (mm)' : 'zcogx',
'Z-COG Y (mm)' : 'zcogy',
'Z-COG Z (mm)' : 'zcogz',
'COPE-MAX' : 'copemax',
'COPE-MAX X (vox)' : 'copemaxx',
'COPE-MAX Y (vox)' : 'copemaxy',
'COPE-MAX Z (vox)' : 'copemaxz',
'COPE-MAX X (mm)' : 'copemaxx',
'COPE-MAX Y (mm)' : 'copemaxy',
'COPE-MAX Z (mm)' : 'copemaxz',
'COPE-MEAN' : 'copemean'}
# An error will be raised if the
# cluster file does not exist (e.g.
# if the specified contrast index
# is invalid)
with open(clusterFile, 'rt') as f:
# Get every line in the file,
# removing leading/trailing
# whitespace, and discarding
# empty lines
lines = f.readlines()
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
lines = [line.strip() for line in lines]
lines = [line for line in lines if line != '']
# the first line should contain column
# names, and each other line should
# contain the data for one cluster
colNames = lines[0]
clusterLines = lines[1:]
# each line should be tab-separated
colNames = colNames.split('\t')
clusterLines = [cl .split('\t') for cl in clusterLines]
# Turn each cluster line into a
# Cluster instance. An error will
# be raised if the columm names
# are unrecognised (i.e. not in
# the colmap above), or if the
# file is poorly formed.
clusters = [Cluster(**dict(zip(colNames, cl))) for cl in clusterLines]
# Make sure all coordinates are in voxels -
# for first level analyses, the coordXform
# will be an identity transform (the coords
# are already in voxels). But for higher
# level, the coords are in mm, and need to
# be transformed to voxels.
for c in clusters:
zmax = [c.zmaxx, c.zmaxy, c.zmaxz]
zcog = [c.zcogx, c.zcogy, c.zcogz]
copemax = [c.copemaxx, c.copemaxy, c.copemaxz]
zmax = affine.transform([zmax], coordXform)[0].round()
zcog = affine.transform([zcog], coordXform)[0].round()
copemax = affine.transform([copemax], coordXform)[0].round()
c.zmaxx, c.zmaxy, c.zmaxz = zmax
c.zcogx, c.zcogy, c.zcogz = zcog
c.copemax, c.copemaxy, c.copemaxz = copemax
return clusters
def getDataFile(featdir):
"""Returns the name of the file in the FEAT directory which contains
the model input data (typically called ``filtered_func_data.nii.gz``).
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
"""
datafile = op.join(featdir, 'filtered_func_data')
return fslimage.addExt(datafile, mustExist=True)
def getMelodicFile(featdir):
"""Returns the name of the file in the FEAT results which contains the
melodic components (if melodic ICA was performed as part of the FEAT
analysis). This file can be loaded as a :class:`.MelodicImage`.
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
"""
melfile = op.join(featdir, 'filtered_func_data.ica', 'melodic_IC')
return fslimage.addExt(melfile, mustExist=True)
def getResidualFile(featdir):
"""Returns the name of the file in the FEAT results which contains
the model fit residuals (typically called ``res4d.nii.gz``).
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
"""
resfile = op.join(featdir, 'stats', 'res4d')
return fslimage.addExt(resfile, mustExist=True)
def getPEFile(featdir, ev):
"""Returns the path of the PE file for the specified EV.
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
:arg ev: The EV number (0-indexed).
"""
pefile = op.join(featdir, 'stats', 'pe{}'.format(ev + 1))
return fslimage.addExt(pefile, mustExist=True)
def getCOPEFile(featdir, contrast):
"""Returns the path of the COPE file for the specified contrast.
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
:arg contrast: The contrast number (0-indexed).
"""
copefile = op.join(featdir, 'stats', 'cope{}'.format(contrast + 1))
return fslimage.addExt(copefile, mustExist=True)
def getZStatFile(featdir, contrast):
"""Returns the path of the Z-statistic file for the specified contrast.
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
:arg contrast: The contrast number (0-indexed).
"""
zfile = op.join(featdir, 'stats', 'zstat{}'.format(contrast + 1))
return fslimage.addExt(zfile, mustExist=True)
def getClusterMaskFile(featdir, contrast):
"""Returns the path of the cluster mask file for the specified contrast.
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
:arg contrast: The contrast number (0-indexed).
"""
mfile = op.join(featdir, 'cluster_mask_zstat{}'.format(contrast + 1))
return fslimage.addExt(mfile, mustExist=True)